82 research outputs found

    Practical and scientific aspects of injection molding simulation

    Get PDF

    Micromechanical finite element modeling of long fiber reinforced thermoplastics

    Get PDF
    Long fiber reinforced thermoplastics are promising candidates for the mass production of lightweight components. In order to predict their microstructure-dependent properties, a novel procedure for the generation of a representative volume element is developed. The approach mimics the pressing process during the fabrication of the material by compression molding. The model is experimentally validated with respect to different mechanical properties, including elasticity, creep and damage

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    Multiscale simulation methodology for the forming behavior of biaxial weft-knitted fabrics

    Get PDF
    Trotz der guten Drapierbarkeit ist das Formen von flachen Mehrlagen-Gestricken (MLG) zu 3D-Preforms fĂŒr schalenartige Faser-Kunststoff-Verbund (FKV) Bauteile immer noch eine Herausforderung, da einige Defekte wie Falten, Gassenbildung oder FaserschĂ€den nicht vollstĂ€ndig vermieden werden können. Daher ist vor der Massenproduktion eine Optimierung erforderlich. Die virtuelle Optimierung des Umformprozesses mit Hilfe von Finite-Element-Methode (FEM) Modellen ist ein attraktiver Ansatz, da die Rechenkosten immer geringer werden. Dazu wurde ein auf Kontinuumsmechanik basierendes Makromodell erfolgreich fĂŒr MLG implementiert. Der makroskalige Modellierungsansatz bietet angemessene Rechenkosten und kann gĂ€ngige Defekte wie Faltenbildung vorhersagen. Weitere Defekte wie Faserversatz, ondulierte Fasern, Knicken von Fasern, FaserschĂ€digung und Gassenbildung können jedoch mit dem Makromodell nicht vorhergesagt werden. Da die KomplexitĂ€t von Bauteilen aus FKV und die QualitĂ€tsanforderungen an die 3D-Preforms zunehmen, sind FEM-Modelle mit höherem Darstellungsgrad erforderlich. Im am weitesten entwickelten mesoskaligen FEM-Modell fĂŒr MLG verhindert die zu starke Vereinfachung des Strickfadensystems mit Federelementen jedoch die FĂ€higkeit dieses FEM-Modells, Faserverschiebungen und Gassenbildung bei großer Verformung zu beschreiben, wobei das Gleiten zwischen den FĂ€den berĂŒcksichtigt werden muss. Ziel ist daher die Entwicklung, Validierung und Anwendung eines mesoskaligen FEM-Modells fĂŒr MLG, um die derzeitigen EinschrĂ€nkungen zu ĂŒberwinden. Es werden neue Modellierungsstrategien fĂŒr biaxiale MLG auf der Mesoskala entwickelt. Die mechanischen Eigenschaften von MLG werden durch eine Reihe von textilphysikalischen PrĂŒfungen charakterisiert und analysiert, die alle notwendigen Daten fĂŒr den Aufbau sowie die Validierung der FEM-Modelle liefern. Es sollen zwei AnsĂ€tze zur Modellierung des VerstĂ€rkungsgarns implementiert und verglichen werden: durch Balken- und durch Schalenelemente. Die validierten Modelle können fĂŒr die Umformsimulation verwendet werden. Es folgt eine Benchmark-Studie ĂŒber die KapazitĂ€t und ZuverlĂ€ssigkeit der verfĂŒgbaren Makromodelle und der entwickelten Mesomodelle durch Umformsimulation. Als Grundlage fĂŒr die Benchmark-Studie werden Umformversuche durchgefĂŒhrt. Das zweite Ziel der Arbeit ist die Modellierung von FKV auf verschiedenen Skalen. Die Modellierung von FKV auf der Makroebene wird mit den Daten der Faserorientierung durchgefĂŒhrt, die aus der Umformsimulation gewonnen werden. Eine Mapping-Methode hilft dabei, die vorhergesagte Faserorientierung aus der Umformsimulation von dem MLG Mesomodell auf das FKV-Makromodell zu ĂŒbertragen. Um den FKV zu charakterisieren und die Parameter fĂŒr das FKV Modell vorzubereiten, werden Versuche mit FKV durchgefĂŒhrt und ausgewertet. Basierend auf dem Mesomodell des MLG wird eine weiteres FKV-Modell vorgeschlagen, wobei Garn und Matrix getrennt modelliert werden. Dieses mesoskalige FKV-Modell enthĂ€lt auch eine Kontaktformulierung, mit der die Delamination im FKV-Bauteil vorhergesagt werden kann. PrĂŒfungen von Schale-Rippen Strukturen dienen als Grundlage fĂŒr die Modellvalidierung. Das validierte Modell wird erfolgreich zur Vorhersage des mechanischen Verhaltens weiterer Schale-Rippen Strukturen mit unterschiedlicher Höhe und Anordnung der Rippen verwendet.:Kapitel 1 stellt die Einleitung und Problemstellung von dem Thema FKV vor. Kapitel 2 gibt eine Übersicht ĂŒber Stand-der-Technik von den Hochleistungsfasern, Herstellung von textilen VerstĂ€rkungen und Halbzeugen, Fertigung von FKV sowie von PrĂŒftechnik fĂŒr Textilien und FKV. ZunĂ€chst wurden in Kapitel 3 eine EinfĂŒhrung in die Modellierung mit FEM allgemein und Stand-der-Technik der Modellierung von technische Textilien gegeben. In Kapitel 4 wurden die Zielsetzung und das Forschungsprogramm festgelegt. Die experimentellen Arbeiten werden in Kapitel 5 vorgestellt. Der erste Schritt ist die Auswahl des Materials und der Konfiguration fĂŒr die MLG. Sowohl das Ausgangsmaterial als auch die produzierten MLG sollten systematisch getestet werden. Als Referenz wird auch ein Leinwandgewebe in die PrĂŒfprogramme aufgenommen. Neben der Charakterisierung von textilen FlĂ€chengebilden sollen auch deren gleichwertige FKV geprĂŒft werden. Das erste Ziel des Forschungsprogramms wird in Kapitel 6 erreicht, wobei verschiedene AnsĂ€tze zur Modellierung von MLG vorgestellt und validiert werden. Die entwickelten und validierten FEM-Modelle werden fĂŒr die Benchmark-Studie der Umformsimulation in Kapitel 7 verwendet. Kapitel 8 befasst sich mit der Modellierung von FKV in verschiedenen Skalen. ZunĂ€chst wird das Mapping-Verfahren vorgestellt. Es wird ein Mapping fĂŒr ein schalenförmiges T-Napf-Bauteil durchgefĂŒhrt. Die trukturanalyse fĂŒr das T-Napf-Bauteil erfolgt fĂŒr ĂŒbliche LastfĂ€lle. Zweitens wird ein mesoskaliges FEM Modell fĂŒr MLG-verstĂ€rkte FKV vorgeschlagen. Dieses Modell wird auf der Grundlage der PrĂŒfdaten aus Kapitel 5 validiert. Das validierte Modell wird dann zur Vorhersage des mechanischen Verhaltens eines Schale-Rippen-FKV-Bauteils unter Biegebelastung verwendet. Kapitel 9 gibt eine Zusammenfassung von den Forschungsergebnissen und VorschlĂ€gen fĂŒr mögliche weitere Forschungen rund um dem Thema MLG als VerstĂ€rkung fĂŒr FKV. Die Kombination von vorhandenen Makro-und Mesomodellen in einer einzigen Simulation kann die Berechnungskosten senken, ohne die VorhersagenfĂ€higkeiten des Modelles kompromittiert zu werden

    Comparison of As-built FEA Simulations and Experimental Results for Additively Manufactured Dogbone Geometries.

    Get PDF
    Additive manufacturing (AM) is increasingly used in new product development: from prototyping to functional part testing, tooling and manufacturing. The flexibility of AM results in the ability to develop a geometrically complex part with reduced effort by moderating some manufacturing constraints while imposing other constraints. However, additively manufactured parts entail a certain amount of ambiguity in terms of material properties, microstructures effects and defects. Due to the intensive energy, rapid cooling and phase changes, parts made by Fused Deposition Modelling (FDM “ a branch of AM) and other layer-manufacturing processes may deviate from the designed geometry resulting in inaccuracies such as discontinuities, curling, and delamination, all of which are attributed to the residual stress accumulations during geometry fabrication. Therefore, the FDM part can strongly differ from its design model, in terms of strength and stiffness. In performance critical applications, analyzing and simulating the component is necessary. Identifying appropriate methodologies to simulate and analyze additively manufactured parts accurately, enables better modelling and design of components. The Finite Element Method (FEM) is a widely used analysis tool for various linear and nonlinear engineering problems (structural, vibrational, thermal etc.). Therefore, it is necessary to determine the accuracy of FEA while analyzing the non-continuous, non-linear FDM parts. The goal of this study is to compare Finite Element Analysis (FEA) simulations of the as-built geometry with the experimental tests of actual FDM parts. A dogbone geometry is used as a test specimen for the study, with a set of different infill patterns. A displacement controlled tensile test is conducted using these specimens to obtain the experimental stress-strain results. Further, as built 3D CAD models of these specimens are developed and a displacement controlled tensile test is simulated using different material models in two FEA solvers. The stress-strain results of the analyses are compared and discussed with the experimental results. The metrics of the comparison are the precision and the accuracy of the results. This study found that FEA results are not always an accurate or reliable means of predicting FDM part behaviors, even when advance experimentally derived material models and as-built geometries are incorporated

    Characterization and Modelling of Composites, Volume II

    Get PDF
    Composites have been increasingly used in various structural components in the aerospace, marine, automotive, and wind energy sectors. Composites’ material characterization is a vital part of the product development and production process. Physical, mechanical, and chemical characterization helps developers to further their understanding of products and materials, thus ensuring quality control. Achieving an in-depth understanding and consequent improvement of the general performance of these materials, however, still requires complex material modeling and simulation tools, which are often multiscale and encompass multiphysics. This Special Issue is aimed at soliciting promising, recent developments in composite modeling, simulation, and characterization, in both design and manufacturing areas, including experimental as well as industrial-scale case studies. All submitted manuscripts will undergo a rigorous review and will only be considered for publication if they meet journal standards

    In-Mold Assembly of Multi-Functional Structures

    Get PDF
    Combining the recent advances in injection moldable polymer composites with the multi-material molding techniques enable fabrication of multi-functional structures to serve multiple functions (e.g., carry load, support motion, dissipate heat, store energy). Current in-mold assembly methods, however, cannot be simply scaled to create structures with miniature features, as the process conditions and the assembly failure modes change with the feature size. This dissertation identifies and addresses the issues associated with the in-mold assembly of multi-functional structures with miniature components. First, the functional capability of embedding actuators is developed. As a part of this effort, computational modeling methods are developed to assess the functionality of the structure with respect to the material properties, process parameters and the heat source. Using these models, the effective material thermal conductivity required to dissipate the heat generated by the embedded small scale actuator is identified. Also, the influence of the fiber orientation on the heat dissipation performance is characterized. Finally, models for integrated product and process design are presented to ensure the miniature actuator survivability during embedding process. The second functional capability developed as a part of this dissertation is the in-mold assembly of multi-material structures capable of motion and load transfer, such as mechanisms with compliant hinges. The necessary hinge and link design features are identified. The shapes and orientations of these features are analyzed with respect to their functionality, mutual dependencies, and the process cost. The parametric model of the interface design is developed. This model is used to minimize both the final assembly weight and the mold complexity as the process cost measure. Also, to minimize the manufacturing waste and the risk of assembly failure due to unbalanced mold filling, the design optimization of runner systems used in multi-cavity molds for in-mold assembly is developed. The complete optimization model is characterized and formulated. The best method to solve the runner optimization problem is identified. To demonstrate the applicability of the tools developed in this dissertation towards the miniaturization of robotic devices, a case study of a novel miniature air vehicle drive mechanism is presented

    Proceedings of the Twenty Second Nordic Seminar on Computational Mechanics

    Get PDF

    Composite Materials in Design Processes

    Get PDF
    The use of composite materials in the design process allows one to tailer a component’s mechanical properties, thus reducing its overall weight. On the one hand, the possible combinations of matrices, reinforcements, and technologies provides more options to the designer. On the other hand, it increases the fields that need to be investigated in order to obtain all the information requested for a safe design. This Applied Sciences Special Issue, “Composite Materials in Design Processes”, collects recent advances in the design methods for components made of composites and composite material properties at a laminate level or using a multi-scale approach

    Proceeding Of Mechanical Engineering Research Day 2016 (MERD’16)

    Get PDF
    This Open Access e-Proceeding contains a compilation of 105 selected papers from the Mechanical Engineering Research Day 2016 (MERD’16) event, which is held in Kampus Teknologi, Universiti Teknikal Malaysia Melaka (UTeM) - Melaka, Malaysia, on 31 March 2016. The theme chosen for this event is ‘IDEA. INSPIRE. INNOVATE’. It was gratifying to all of us when the response for MERD’16 is overwhelming as the technical committees received more than 200 submissions from various areas of mechanical engineering. After a peer-review process, the editors have accepted 105 papers for the e-proceeding that cover 7 main themes. This open access e-Proceeding can be viewed or downloaded at www3.utem.edu.my/care/proceedings. We hope that these proceeding will serve as a valuable reference for researchers. With the large number of submissions from the researchers in other faculties, the event has achieved its main objective which is to bring together educators, researchers and practitioners to share their findings and perhaps sustaining the research culture in the university. The topics of MERD’16 are based on a combination of fundamental researches, advanced research methodologies and application technologies. As the editor-in-chief, we would like to express our gratitude to the editorial board and fellow review members for their tireless effort in compiling and reviewing the selected papers for this proceeding. We would also like to extend our great appreciation to the members of the Publication Committee and Secretariat for their excellent cooperation in preparing the proceeding of MERD’16
    • 

    corecore