3,996 research outputs found

    Scalable Video Streaming over the Internet

    Get PDF
    The objectives of this thesis are to investigate the challenges on video streaming, to explore and compare different video streaming mechanisms, and to develop video streaming algorithms that maximize visual quality. To achieve these objectives, we first investigate scalable video multicasting schemes by comparing layered video multicasting with replicated stream video multicasting. Even though it has been generally accepted that layered video multicasting is superior to replicated stream multicasting, this assumption is not based on a systematic and quantitative comparison. We argue that there are indeed scenarios where replicated stream multicasting is the preferred approach. We also consider the problem of providing perceptually good quality of layered VBR video. This problem is challenging, because the dynamic behavior of the Internet's available bandwidth makes it difficult to provide good quality. Also a video encoded to provide a consistent quality exhibits significant data rate variability. We are, therefore, faced with the problem of accommodating the mismatch between the available bandwidth variability and the data rate variability of the encoded video. We propose an optimal quality adaptation algorithm that minimizes quality variation while at the same time increasing the utilization of the available bandwidth. Finally, we investigate the transmission control protocol (TCP) for a transport layer protocol in streaming packetized media data. Our approach is to model a video streaming system and derive relationships under which the system employing the TCP protocol achieves desired performance. Both simulation results and the Internet experimental results validate this model and demonstrate the buffering delay requirements achieve desired video quality with high accuracy. Based on the relationships, we also develop realtime estimation algorithms of playout buffer requirements.Ph.D.Committee Chair: Mostafa H. Ammar; Committee Co-Chair: Yucel Altunbasak; Committee Member: Chuanyi Ji; Committee Member: George Riley; Committee Member: Henry Owen; Committee Member: Jack Brassi

    Video streaming with quality adaption using collaborative active grid networks

    Get PDF
    Due to the services and demands of the end users, Distributed Computing (Grid Technology, Web Services, and Peer-to-Peer) has been developedrapidJy in thelastyears. Theconvergence of these architectures has been possible using mechanisms such as Collaborative work and Resources Sharing. Grid computing is a platform to enable flexible, secure, controlled, scalable, ubiquitous and heterogeneous services. On the other hand, Video Streaming applications demand a greater deployment over connected Internet users. The present work uses the Acti ve Grid technology as a fundamental platform to give a solution of multimediacontentrecovery. This solution takes into account the following key concepts: collaborative work, multi-source recovery and adapti ve quality. A new archi tecture is designed to deliver video content over a Grid Network. The acti ve and passi ve roles of the nodes are important to guarantee a high quality and efficiency for the video streaming system. The acti ve sender nodes are the content suppliers, while the passive sender nodes wiU perform the backup functions, based on global resource control policies. The aim of the backup node is minirnize the time to restore the systemin caseoffailures. In this way, all participant peers work in a collaborati ve manner following a mul ti -source recovery scheme. Furthermore, Video La yered Encoding is used to manage the video data in a high scalable way, di viding the video in multiple layers. This video codification scheme enables thequality adaptation according to the availability of system resources. In addition, a buffer by sender peer and by layer is needed for an effecti ve control ofthe video retrieve. The QoS will fit considering the state of each buffer and the measurement tools provide by the Acti ve Grid on the network nodes. Ke ywords: Peer -to-Peer Grid Architecture, Services for Active Grids, Streaming Media, Layered Coding, Quality Adaptation, CoUaborative Work.Peer Reviewe

    Objective assessment of region of interest-aware adaptive multimedia streaming quality

    Get PDF
    Adaptive multimedia streaming relies on controlled adjustment of content bitrate and consequent video quality variation in order to meet the bandwidth constraints of the communication link used for content delivery to the end-user. The values of the easy to measure network-related Quality of Service metrics have no direct relationship with the way moving images are perceived by the human viewer. Consequently variations in the video stream bitrate are not clearly linked to similar variation in the user perceived quality. This is especially true if some human visual system-based adaptation techniques are employed. As research has shown, there are certain image regions in each frame of a video sequence on which the users are more interested than in the others. This paper presents the Region of Interest-based Adaptive Scheme (ROIAS) which adjusts differently the regions within each frame of the streamed multimedia content based on the user interest in them. ROIAS is presented and discussed in terms of the adjustment algorithms employed and their impact on the human perceived video quality. Comparisons with existing approaches, including a constant quality adaptation scheme across the whole frame area, are performed employing two objective metrics which estimate user perceived video quality

    An HTTP/2 push-based approach for SVC adaptive streaming

    Get PDF

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio
    corecore