67,612 research outputs found

    A Review of Layer Based Manufacturing Processes for Metals

    Get PDF
    The metal layered manufacturing processes have provided industries with a fast method to build functional parts directly from CAD models. This paper compares current metal layered manufacturing technologies from including powder based metal deposition, selective laser sinstering (SLS), wire feed deposition etc. The characteristics of each process, including its industrial applications, advantages/disadvantages, costs etc are discussed. In addition, the comparison between each process in terms of build rate, suitable metal etc. is presented in this paper.Mechanical Engineerin

    Virtual assembly rapid prototyping of near net shapes

    Get PDF
    Virtual reality (VR) provides another dimension to many engineering applications. Its immersive and interactive nature allows an intuitive approach to study both cognitive activities and performance evaluation. Market competitiveness means having products meet form, fit and function quickly. Rapid Prototyping and Manufacturing (RP&M) technologies are increasingly being applied to produce functional prototypes and the direct manufacturing of small components. Despite its flexibility, these systems have common drawbacks such as slow build rates, a limited number of build axes (typically one) and the need for post processing. This paper presents a Virtual Assembly Rapid Prototyping (VARP) project which involves evaluating cognitive activities in assembly tasks based on the adoption of immersive virtual reality along with a novel non-layered rapid prototyping for near net shape (NNS) manufacturing of components. It is envisaged that this integrated project will facilitate a better understanding of design for manufacture and assembly by utilising equivalent scale digital and physical prototyping in one rapid prototyping system. The state of the art of the VARP project is also presented in this paper

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    A Review of State-of-the-Art Large Sized Foam Cutting Rapid Prototyping and Manufacturing Technologies.

    Get PDF
    Purpose – Current additive rapid prototyping (RP) technologies fail to efficiently produce objects greater than 0.5?m3 due to restrictions in build size, build time and cost. A need exists to develop RP and manufacturing technologies capable of producing large objects in a rapid manner directly from computer-aided design data. Foam cutting RP is a relatively new technology capable of producing large complex objects using inexpensive materials. The purpose of this paper is to describe nine such technologies that have been developed or are currently being developed at institutions around the world. The relative merits of each system are discussed. Recommendations are given with the aim of enhancing the performance of existing and future foam cutting RP systems. Design/methodology/approach – The review is based on an extensive literature review covering academic publications, company documents and web site information. Findings – The paper provides insights into the different machine configurations and cutting strategies. The most successful machines and cutting strategies are identified. Research limitations/implications – Most of the foam cutting RP systems described have not been developed to the commercial level, thus a benchmark study directly comparing the nine systems was not possible. Originality/value – This paper provides the first overview of foam cutting RP technology, a field which is over a decade old. The information contained in this paper will help improve future developments in foam cutting RP systems

    Multiresolution Layered Manufacturing

    Get PDF
    PURPOSE: Two-photon polymerization (TPP) has become one of the most popular techniques for stereolithography at very high resolutions. When printing relatively large structures at high resolutions, one of the main limiting factors is the printing time. The goal of this work is to present a new slicing algorithm to minimize printing times. DESIGN/METHODOLOGY/APPROACH: Typically, slicing algorithms used for TPP do not take into account the fact that TPP can print at a range of resolutions (i.e. with different heights and diameters) by varying parameters such as exposure time, laser power, photoresist properties, and optical arrangements. This work presents Multiresolution Layered Manufacturing (MLM), a novel slicing algorithm that processes 3D structures to separate parts manufacturable at low resolution from those that require a higher resolution. FINDINGS: MLM can significantly reduce the printing time of 3D structures at high resolutions. The maximum theoretical speed-up depends on the range of printing resolutions, but the effective speed-up also depends on the geometry of each 3D structure. RESEARCH LIMITATIONS/IMPLICATIONS: MLM opens the possibility to significantly decrease printing times, potentially opening the use of TPP to new applications in many disciplines such as microfluidics, metamaterial research or wettability. ORIGINALITY/VALUE: There are many instances of previous research on printing at several resolutions. However, in most cases, the toolpaths have to be manually arranged. In some cases, previous research also automates the generation of toolpaths, but they are limited in various ways. MLM is the first algorithm to comprehensively solve this problem for a wide range of true 3D structures.NANO3D (a BEWARE Fellowship from the Walloon Region, Belgium, part of the Marie Curie Programme of the ERC). IAP 7/38 MicroMAST (Interuniversity Attraction Poles Programme from the Belgian Science Policy Office, the Walloon Region and the FNRS)

    Extrusion-based additive manufacturing of concrete products. Revolutionizing and remodeling the construction industry

    Get PDF
    Additive manufacturing is one of the main topics of the fourth industrial revolution; defined as Industry 4.0. This technology offers several advantages related to the construction and architectural sectors; such as economic; environmental; social; and engineering benefits. The usage of concrete in additive technologies allows the development of innovative applications and complexity design in the world of construction such as buildings; housing modules; bridges; and urban and domestic furniture elements. The aim of this review was to show in detail a general panoramic of extrusion-based additive processes in the construction sector; the main advantages of using additive manufacturing with the respect to traditional manufacturing; the fundamental requirements of 3D printable material (fresh and hardened properties), and state-of-the-art aesthetic and architectural projects with functional properties
    corecore