112 research outputs found

    Image segmentation and feature extraction for recognizing strokes in tennis game videos

    Get PDF
    This paper addresses the problem of recognizing human actions from video. Particularly, the case of recognizing events in tennis game videos is analyzed. Driven by our domain knowledge, a robust player segmentation algorithm is developed real video data. Further, we introduce a number of novel features to be extracted for our particular application. Different feature combinations are investigated in order to find the optimal one. Finally, recognition results for different classes of tennis strokes using automatic learning capability of Hidden Markov Models (HMMs) are presented. The experimental results demonstrate that our method is close to realizing statistics of tennis games automatically using ordinary TV broadcast videos

    Object-based video representations: shape compression and object segmentation

    Get PDF
    Object-based video representations are considered to be useful for easing the process of multimedia content production and enhancing user interactivity in multimedia productions. Object-based video presents several new technical challenges, however. Firstly, as with conventional video representations, compression of the video data is a requirement. For object-based representations, it is necessary to compress the shape of each video object as it moves in time. This amounts to the compression of moving binary images. This is achieved by the use of a technique called context-based arithmetic encoding. The technique is utilised by applying it to rectangular pixel blocks and as such it is consistent with the standard tools of video compression. The blockbased application also facilitates well the exploitation of temporal redundancy in the sequence of binary shapes. For the first time, context-based arithmetic encoding is used in conjunction with motion compensation to provide inter-frame compression. The method, described in this thesis, has been thoroughly tested throughout the MPEG-4 core experiment process and due to favourable results, it has been adopted as part of the MPEG-4 video standard. The second challenge lies in the acquisition of the video objects. Under normal conditions, a video sequence is captured as a sequence of frames and there is no inherent information about what objects are in the sequence, not to mention information relating to the shape of each object. Some means for segmenting semantic objects from general video sequences is required. For this purpose, several image analysis tools may be of help and in particular, it is believed that video object tracking algorithms will be important. A new tracking algorithm is developed based on piecewise polynomial motion representations and statistical estimation tools, e.g. the expectationmaximisation method and the minimum description length principle

    Layered motion segmentation and depth ordering by tracking edges

    Full text link

    Video object segmentation for future multimedia applications

    Get PDF
    An efficient representation of two-dimensional visual objects is specified by an emerging audiovisual compression standard known as MPEG-4. It incorporates the advantages of segmentation-based video compression (whereby objects are encoded independently, facilitating content-based functionalities), and also the advantages of more traditional block-based approaches (such as low delay and compression efficiency). What is not specified, however, is the method of extracting semantic objects from a scene corresponding to a video segmentation task. An accurate, robust and flexible solution to this is essential to enable the future multimedia applications possible with MPEG-4. Two categories of video segmentation approaches can be identified: supervised and unsupervised. A representative set of unsupervised approaches is discussed. These approaches are found to be suitable for real-time MPEG-4 applications. However, they are not suitable for off-line applications which require very accurate segmentations of entire semantic objects. This is because an automatic segmentation process cannot solve the ill-posed problem of extracting semantic meaning from a scene. Supervised segmentation incorporates user interaction so that semantic objects in a scene can be defined. A representative set of supervised approaches with greater or lesser degrees of interaction is discussed. Three new approaches to the problem, each more sophisticated than the last, are presented by the author. The most sophisticated is an object-based approach in which an automatic segmentation and tracking algorithm is used to perform a segmentation of a scene in terms of the semantic objects defined by the user. The approach relies on maximum likelihood estimation of the parameters of mixtures of multimodal multivariate probability distribution functions. The approach is an enhanced and modified version of an existing approach yielding more sophisticated object modelling. The segmentation results obtained are comparable to those of existing approaches and in many cases better. It is concluded that the author’s approach is ideal as a content extraction tool for future off-line MPEG-4 applications
    • 

    corecore