711 research outputs found

    Fourth ERCIM workshop on e-mobility

    Get PDF

    Quality management of surveillance multimedia streams via federated SDN controllers in Fiwi-iot integrated deployment environments

    Get PDF
    Traditionally, hybrid optical-wireless networks (Fiber-Wireless - FiWi domain) and last-mile Internet of Things edge networks (Edge IoT domain) have been considered independently, with no synergic management solutions. On the one hand, FiWi has primarily focused on high-bandwidth and low-latency access to cellular-equipped nodes. On the other hand, Edge IoT has mainly aimed at effective dispatching of sensor/actuator data among (possibly opportunistic) nodes, by using direct peer-to-peer and base station (BS)-assisted Internet communications. The paper originally proposes a model and an architecture that loosely federate FiWi and Edge IoT domains based on the interaction of FiWi and Edge IoT software defined networking controllers: The primary idea is that our federated controllers can seldom exchange monitoring data and control hints the one with the other, thus mutually enhancing their capability of end-to-end quality-aware packet management. To show the applicability and the effectiveness of the approach, our original proposal is applied to the notable example of multimedia stream provisioning from surveillance cameras deployed in the Edge IoT domain to both an infrastructure-side server and spontaneously interconnected mobile smartphones; our solution is able to tune the BS behavior of the FiWi domain and to reroute/prioritize traffic in the Edge IoT domain, with the final goal to reduce latency. In addition, the reported application case shows the capability of our solution of joint and coordinated exploitation of resources in FiWi and Edge IoT domains, with performance results that highlight its benefits in terms of efficiency and responsiveness

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future

    Raamistik mobiilsete asjade veebile

    Get PDF
    Internet on oma arengus lĂ€bi aastate jĂ”udnud jĂ€rgmisse evolutsioonietappi - asjade internetti (ingl Internet of Things, lĂŒh IoT). IoT ei tĂ€hista ĂŒhtainsat tehnoloogiat, see vĂ”imaldab eri seadmeil - arvutid, mobiiltelefonid, autod, kodumasinad, loomad, virtuaalsensorid, jne - omavahel ĂŒle Interneti suhelda, vajamata seejuures pidevat inimesepoolset seadistamist ja juhtimist. Mobiilseadmetest nagu nĂ€iteks nutitelefon ja tahvelarvuti on saanud meie igapĂ€evased kaaslased ning oma mitmekĂŒlgse vĂ”imekusega on nad motiveerinud teadustegevust mobiilse IoT vallas. Nutitelefonid kĂ€tkevad endas vĂ”imekaid protsessoreid ja 3G/4G tehnoloogiatel pĂ”hinevaid internetiĂŒhendusi. Kuid kui kasutada seadmeid jĂ€rjepanu tĂ€isvĂ”imekusel, tĂŒhjeneb mobiili aku kiirelt. Doktoritöö esitleb energiasÀÀstlikku, kergekaalulist mobiilsete veebiteenuste raamistikku anduriandmete kogumiseks, kasutades kergemaid, energiasÀÀstlikumaid suhtlustprotokolle, mis on IoT keskkonnale sobilikumad. Doktoritöö kĂ€sitleb pĂ”hjalikult energia kokkuhoidu mobiilteenuste majutamisel. Töö kĂ€igus loodud raamistikud on kontseptsiooni tĂ”estamiseks katsetatud mitmetes juhtumiuuringutes pĂ€ris seadmetega.The Internet has evolved, over the years, from just being the Internet to become the Internet of Things (IoT), the next step in its evolution. IoT is not a single technology and it enables about everything from computers, mobile phones, cars, appliances, animals, virtual sensors, etc. that connect and interact with each other over the Internet to function free from human interaction. Mobile devices like the Smartphone and tablet PC have now become essential to everyday life and with extended capabilities have motivated research related to the mobile Internet of Things. Although, the recently developed Smartphones enjoy the high performance and high speed 3G/4G mobile Internet data transmission services, such high speed performances quickly drain the battery power of the mobile device. This thesis presents an energy efficient lightweight mobile Web service provisioning framework for mobile sensing utilizing the protocols that were designed for the constrained IoT environment. Lightweight protocols provide an energy efficient way of communication. Finally, this thesis highlights the energy conservation of the mobile Web service provisioning, the developed framework, extensively. Several case studies with the use of the proposed framework were implemented on real devices and has been thoroughly tested as a proof-of-concept.https://www.ester.ee/record=b522498

    Progressive Caching System for Video Streaming Services Over Content Centric Network

    Get PDF
    This paper presents a metafile-based progressive caching system over the content-centric networking (CCN) tree that supports seamless video streaming services with a high network utilization. In the proposed caching system, each CCN node uses a metafile made by a scalable caching algorithm for efficient and fast chunk caching management, and the reserved area of the CCN interest/data packet headers is used to deliver caching information among the CCN nodes. Based on this caching information, the proposed caching system determines the caching range of video data to minimize the required peak bandwidth for each link. The proposed caching system is implemented using the NS-3 based named data networking simulator. Furthermore, a real cellular wireless network testbed is realized with C/C++, open sources such as CCNx and Ubuntu MME, and a Raspberry PIs to examine the performance of the proposed caching system. The experiment results demonstrate the performance improvement achieved by the proposed caching system.11Ysciescopu

    Creation of value with open source software in the telecommunications field

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200
    • 

    corecore