55 research outputs found

    FGPA Implementation of Low-Complexity ICA Based Blind Multiple-Input-Multiple-Output OFDM Receivers

    Get PDF
    In this thesis Independent Component Analysis (ICA) based methods are used for blind detection in MIMO systems. ICA relies on higher order statistics (HOS) to recover the transmitted streams from the received mixture. Blind separation of the mixture is achieved based on the assumption of mutual statistical independence of the source streams. The use of HOS makes ICA methods less sensitive to Gaussian noise. ICA increase the spectral efficiency compared to conventional systems, without any training/pilot data required. ICA is usually used for blind source separation (BSS) from their mixtures by measuring non-Gaussianity using Kurtosis. Many scientific problems require FP arithmetic with high precision in their calculations. Moreover a large dynamic range of numbers is necessary for signal processing. FP arithmetic has the ability to automatically scale numbers and allows numbers to be represented in a wider range than fixed-point arithmetic. Nevertheless, FP algorithm is difficult to implement on the FPGA, because the algorithm is so complex that the area (logic elements) of FPGA leads to excessive consumption when implemented. A simplified 32-bit FP implementation includes adder, Subtractor, multiplier, divider, and square rooter The FPGA design is based on a hierarchical concept, and the experimental results of the design are presented

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Investigation of coding and equalization for the digital HDTV terrestrial broadcast channel

    Get PDF
    Includes bibliographical references (p. 241-248).Supported by the Advanced Telecommunications Research Program.Julien J. Nicolas

    Exploiting Diversity in Broadband Wireless Relay Networks

    Get PDF
    Fading is one of the most fundamental impairments to wireless communications. The standard approach to combating fading is by adding redundancy - or diversity - to help increase coverage and transmission speed. Motivated by the results in multiple-input multiple-output technologies, which are usually used at base stations or access points, cooperation commutation has been proposed to improve the performance of wireless networks which consist of low-cost single antenna devices. While the majority of the research in cooperative communication focuses on flat fading for its simplicity and easy analysis, in practice the underlying channels in broadband wireless communication systems such as cellular systems (UMTS/LTE) are more likely to exhibit frequency selective fading. In this dissertation, we consider a frequency selective fading channel model and explore distributed diversity techniques in broadband wireless relay networks, with consideration to practical issues such as channel estimation and complexity-performance tradeoffs. We first study a system model with one source, one destination and multiple decode-and-forward (DF) relays which share a single channel orthogonal to the source. We derive the diversity-multiplexing tradeoff (DMT) for several relaying strategies: best relay selection, random relay selection, and the case when all decoding relays participate. The best relay selection method selects the relay in the decoding set with the largest sum-squared relay-to-destination channel coefficients. This scheme can achieve the optimal DMT of the system at the expense of higher complexity, compared to the other two relaying strategies which do not always exploit the spatial diversity offered by the relays. Different from flat fading, we find special cases when the three relaying strategies have the same DMT. We further present a transceiver design and prove it can achieve the optimal DMT asymptotically. Monte Carlo simulations are presented to corroborate the theoretical analysis. We provide a detailed performance comparison of the three relaying strategies in channels encountered in practice. The work has been extended to systems with multiple amplify-and-forward relays. We propose two relay selection schemes with maximum likelihood sequential estimator and linear zero- forcing equalization at the destination respectively and both schemes can asymptotically achieve the optimal DMT. We next extend the results in the two-hop network, as previously studied, to multi-hop networks. In particular, we consider the routing problem in clustered multi-hop DF relay networks since clustered multi-hop wireless networks have attracted significant attention for their robustness to fading, hierarchical structure, and ability to exploit the broadcast nature of the wireless channel. We propose an opportunistic routing (or relay selection) algorithm for such networks. In contrast to the majority of existing approaches to routing in clustered networks, our algorithm only requires channel state information in the final hop, which is shown to be essential for reaping the diversity offered by the channel. In addition to exploiting the available diversity, our simple cross-layer algorithm has the flexibility to satisfy an additional routing objective such as maximization of network lifetime. We demonstrate through analysis and simulation that our proposed routing algorithm attains full diversity under certain conditions on the cluster sizes, and its diversity is equal to the diversity of more complicated approaches that require full channel state information. The final part of this dissertation considers channel estimation in relay networks. Channel state information is vital for exploiting diversity in cooperative networks. The existing literature on cooperative channel estimation assumes that block lengths are long and that channel estimation takes place within a fading block. However, if the forwarding delay needs to be reduced, short block lengths are preferred, and adaptive estimation through multiple blocks is required. In particular, we consider estimating the relay-to-destination channel in DF relay systems for which the presence of forwarded information is probabilistic since it is unknown whether the relay participates in the forwarding phase. A detector is used so that the update of the least mean square channel estimate is made only when the detector decides the presence of training data. We use the generalized likelihood ratio test and focus on the detector threshold for deciding whether the training sequence is present. We also propose a heuristic objective function which leads to a proper threshold to improve the convergence speed and reduce the estimation error. Extensive numerical results show the superior performance of using this threshold as opposed to fixed thresholds

    Research on Cognitive Radio within the Freeband-AAF project

    Get PDF

    Modulation classification of digital communication signals

    Get PDF
    Modulation classification of digital communications signals plays an important role in both military and civilian sectors. It has the potential of replacing several receivers with one universal receiver. An automatic modulation classifier can be defined as a system that automatically identifies the modulation type of the received signal given that the signal exists and its parameters lie in a known range. This thesis addresses the need for a universal modulation classifier capable of classifying a comprehensive list of digital modulation schemes. Two classification approaches are presented: a decision-theoretic (DT) approach and a neural network (NN) approach. First classifiers are introduced that can classify ASK, PSK, and FSK signals. A decision tree is designed for the DT approach and a NN structure is formulated und trained to classify these signals. Both classifiers use the same key features derived from the intercepted signal. These features are based on the instantaneous amplitude, instantaneous phase, and instantaneous frequency of the intercepted signal, and the cumulates of its complex envelope. Threshold values for the DT approach are found from the minimum total error probabilities of the extracted key features at SNR of 20 to -5dB. The NN parameters are found by training the networks on the same data. The DT and NN classifiers are expanded to include CPM signals. Signals within the CPM class are also added to the classifiers and a separate decision tree and new NN structure are found far these signals. New key features to classify these signals are also introduced. The classifiers are then expanded further to include multiple access signals, followed by QAM, PSK8 and FSK8 signals. New features arc found to classify these signals. The final decision tree is able to accommodate a total of fifteen different modulation types. The NN structure is designed in a hierarchical fashion to optimise the classification performance of these fifteen digital modulation schemes. Both DT and NN classifiers are able to classify signals with more than 90% accuracy in the presence of additive white Gaussian within SNR ranging from 20 to 5dB. However, the performance of the NN classifier appears to be more robust as it degrades gradually at the SNRs of 0 and -5dB. At -5dB, the NN has an overall accuracy of 73.58%, whereas the DT classifier achieves only 47.3% accuracy. The overall accuracy of the NN classifier, over the combined SNR range of 20 to -5dB, is 90.7% compared to 84.56% for the DT classifier. Finally, the performances of these classifiers are tested in the presence of Rayleigh fading. The DT and NN classifier structures are modified to accommodate fading and again, new key features are introduced to accomplish this. With the modifications, the overall accuracy of the NN classifier, over the combined SNR range of 20 to -5dB and 120Hz Doppler shift, is 87.34% compared to 80.52% for the DT classifier

    Neural networks for optical channel equalization in high speed communication systems

    Get PDF
    La demande future de bande passante pour les données dépassera les capacités des systèmes de communication optique actuels, qui approchent de leurs limites en raison des limitations de la bande passante électrique des composants de l’émetteur. L’interférence intersymbole (ISI) due à cette limitation de bande est le principal facteur de dégradation pour atteindre des débits de données élevés. Dans ce mémoire, nous étudions plusieurs techniques de réseaux neuronaux (NN) pour combattre les limites physiques des composants de l’émetteur pilotés à des débits de données élevés et exploitant les formats de modulation avancés avec une détection cohérente. Notre objectif principal avec les NN comme égaliseurs de canaux ISI est de surmonter les limites des récepteurs optimaux conventionnels, en fournissant une complexité évolutive moindre et une solution quasi optimale. Nous proposons une nouvelle architecture bidirectionnelle profonde de mémoire à long terme (BiLSTM), qui est efficace pour atténuer les graves problèmes d’ISI causés par les composants à bande limitée. Pour la première fois, nous démontrons par simulation que notre BiLSTM profonde proposée atteint le même taux d’erreur sur les bits(TEB) qu’un estimateur de séquence à maximum de vraisemblance (MLSE) optimal pour la modulation MDPQ. Les NN étant des modèles pilotés par les données, leurs performances dépendent fortement de la qualité des données d’entrée. Nous démontrons comment les performances du BiLSTM profond réalisable se dégradent avec l’augmentation de l’ordre de modulation. Nous examinons également l’impact de la sévérité de l’ISI et de la longueur de la mémoire du canal sur les performances de la BiLSTM profonde. Nous étudions les performances de divers canaux synthétiques à bande limitée ainsi qu’un canal optique mesuré à 100 Gbaud en utilisant un modulateur photonique au silicium (SiP) de 35 GHz. La gravité ISI de ces canaux est quantifiée grâce à une nouvelle vue graphique des performances basée sur les écarts de performance de base entre les solutions optimales linéaires et non linéaires classiques. Aux ordres QAM supérieurs à la QPSK, nous quantifions l’écart de performance BiLSTM profond par rapport à la MLSE optimale à mesure que la sévérité ISI augmente. Alors qu’elle s’approche des performances optimales de la MLSE à 8QAM et 16QAM avec une pénalité, elle est capable de dépasser largement la solution optimale linéaire à 32QAM. Plus important encore, l’avantage de l’utilisation de modèles d’auto-apprentissage comme les NN est leur capacité à apprendre le canal pendant la formation, alors que la MLSE optimale nécessite des informations précises sur l’état du canal.The future demand for the data bandwidth will surpass the capabilities of current optical communication systems, which are approaching their limits due to the electrical bandwidth limitations of the transmitter components. Inter-symbol interference (ISI) due to this band limitation is the major degradation factor to achieve high data rates. In this thesis, we investigate several neural network (NN) techniques to combat the physical limits of the transmitter components driven at high data rates and exploiting the advanced modulation formats with coherent detection. Our main focus with NNs as ISI channel equalizers is to overcome the limitations of conventional optimal receivers, by providing lower scalable complexity and near optimal solution. We propose a novel deep bidirectional long short-term memory (BiLSTM) architecture, that is effective in mitigating severe ISI caused by bandlimited components. For the first time, we demonstrate via simulation that our proposed deep BiLSTM achieves the same bit error rate (BER) performance as an optimal maximum likelihood sequence estimator (MLSE) for QPSK modulation. The NNs being data-driven models, their performance acutely depends on input data quality. We demonstrate how the achievable deep BiLSTM performance degrades with the increase in modulation order. We also examine the impact of ISI severity and channel memory length on deep BiLSTM performance. We investigate the performances of various synthetic band-limited channels along with a measured optical channel at 100 Gbaud using a 35 GHz silicon photonic(SiP) modulator. The ISI severity of these channels is quantified with a new graphical view of performance based on the baseline performance gaps between conventional linear and nonlinear optimal solutions. At QAM orders above QPSK, we quantify deep BiLSTM performance deviation from the optimal MLSE as ISI severity increases. While deep BiLSTM approaches the optimal MLSE performance at 8QAM and 16QAM with a penalty, it is able to greatly surpass the linear optimal solution at 32QAM. More importantly, the advantage of using self learning models like NNs is their ability to learn the channel during the training, while the optimal MLSE requires accurate channel state information

    Design and Analysis of Forward Error Control Coding and Signaling for Guaranteeing QoS in Wireless Broadcast Systems

    Get PDF
    Broadcasting systems are networks where the transmission is received by several terminals. Generally broadcast receivers are passive devices in the network, meaning that they do not interact with the transmitter. Providing a certain Quality of Service (QoS) for the receivers in heterogeneous reception environment with no feedback is not an easy task. Forward error control coding can be used for protection against transmission errors to enhance the QoS for broadcast services. For good performance in terrestrial wireless networks, diversity should be utilized. The diversity is utilized by application of interleaving together with the forward error correction codes. In this dissertation the design and analysis of forward error control and control signalling for providing QoS in wireless broadcasting systems are studied. Control signaling is used in broadcasting networks to give the receiver necessary information on how to connect to the network itself and how to receive the services that are being transmitted. Usually control signalling is considered to be transmitted through a dedicated path in the systems. Therefore, the relationship of the signaling and service data paths should be considered early in the design phase. Modeling and simulations are used in the case studies of this dissertation to study this relationship. This dissertation begins with a survey on the broadcasting environment and mechanisms for providing QoS therein. Then case studies present analysis and design of such mechanisms in real systems. The mechanisms for providing QoS considering signaling and service data paths and their relationship at the DVB-H link layer are analyzed as the first case study. In particular the performance of different service data decoding mechanisms and optimal signaling transmission parameter selection are presented. The second case study investigates the design of signaling and service data paths for the more modern DVB-T2 physical layer. Furthermore, by comparing the performances of the signaling and service data paths by simulations, configuration guidelines for the DVB-T2 physical layer signaling are given. The presented guidelines can prove useful when configuring DVB-T2 transmission networks. Finally, recommendations for the design of data and signalling paths are given based on findings from the case studies. The requirements for the signaling design should be derived from the requirements for the main services. Generally, these requirements for signaling should be more demanding as the signaling is the enabler for service reception.Siirretty Doriast

    Spatial diversity in MIMO communication systems with distributed or co-located antennas

    Get PDF
    The use of multiple antennas in wireless communication systems has gained much attention during the last decade. It was shown that such multiple-input multiple-output (MIMO) systems offer huge advantages over single-antenna systems. Typically, quite restrictive assumptions are made concerning the spacing of the individual antenna elements. On the one hand, it is typically assumed that the antenna elements at transmitter and receiver are co-located, i.e., they belong to some sort of antenna array. On the other hand, it is often assumed that the antenna spacings are sufficiently large, so as to justify the assumption of independent fading. In this thesis, the above assumptions are relaxed. In the first part, it is shown that MIMO systems with distributed antennas and MIMO systems with co-located antennas can be treated in a single, unifying framework. In the second part this fact is utilized, in order to develop appropriate transmit power allocation strategies for co-located and distributed MIMO systems. Finally, the third part focuses on specific synchronization problems that are of interest for distributed MIMO systems
    corecore