5,245 research outputs found

    Visualizing and Interacting with Concept Hierarchies

    Full text link
    Concept Hierarchies and Formal Concept Analysis are theoretically well grounded and largely experimented methods. They rely on line diagrams called Galois lattices for visualizing and analysing object-attribute sets. Galois lattices are visually seducing and conceptually rich for experts. However they present important drawbacks due to their concept oriented overall structure: analysing what they show is difficult for non experts, navigation is cumbersome, interaction is poor, and scalability is a deep bottleneck for visual interpretation even for experts. In this paper we introduce semantic probes as a means to overcome many of these problems and extend usability and application possibilities of traditional FCA visualization methods. Semantic probes are visual user centred objects which extract and organize reduced Galois sub-hierarchies. They are simpler, clearer, and they provide a better navigation support through a rich set of interaction possibilities. Since probe driven sub-hierarchies are limited to users focus, scalability is under control and interpretation is facilitated. After some successful experiments, several applications are being developed with the remaining problem of finding a compromise between simplicity and conceptual expressivity

    Visualizing Co-Phylogenetic Reconciliations

    Get PDF
    We introduce a hybrid metaphor for the visualization of the reconciliations of co-phylogenetic trees, that are mappings among the nodes of two trees. The typical application is the visualization of the co-evolution of hosts and parasites in biology. Our strategy combines a space-filling and a node-link approach. Differently from traditional methods, it guarantees an unambiguous and `downward' representation whenever the reconciliation is time-consistent (i.e., meaningful). We address the problem of the minimization of the number of crossings in the representation, by giving a characterization of planar instances and by establishing the complexity of the problem. Finally, we propose heuristics for computing representations with few crossings.Comment: This paper appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Leveraging Citation Networks to Visualize Scholarly Influence Over Time

    Full text link
    Assessing the influence of a scholar's work is an important task for funding organizations, academic departments, and researchers. Common methods, such as measures of citation counts, can ignore much of the nuance and multidimensionality of scholarly influence. We present an approach for generating dynamic visualizations of scholars' careers. This approach uses an animated node-link diagram showing the citation network accumulated around the researcher over the course of the career in concert with key indicators, highlighting influence both within and across fields. We developed our design in collaboration with one funding organization---the Pew Biomedical Scholars program---but the methods are generalizable to visualizations of scholarly influence. We applied the design method to the Microsoft Academic Graph, which includes more than 120 million publications. We validate our abstractions throughout the process through collaboration with the Pew Biomedical Scholars program officers and summative evaluations with their scholars

    Preserving Command Line Workflow for a Package Management System Using ASCII DAG Visualization

    Get PDF
    Package managers provide ease of access to applications by removing the time-consuming and sometimes completely prohibitive barrier of successfully building, installing, and maintaining the software for a system. A package dependency contains dependencies between all packages required to build and run the target software. Package management system developers, package maintainers, and users may consult the dependency graph when a simple listing is insufficient for their analyses. However, users working in a remote command line environment must disrupt their workflow to visualize dependency graphs in graphical programs, possibly needing to move files between devices or incur forwarding lag. Such is the case for users of Spack, an open source package management system originally developed to ease the complex builds required by supercomputing environments. To preserve the command line workflow of Spack, we develop an interactive ASCII visualization for its dependency graphs. Through interviews with Spack maintainers, we identify user goals and corresponding visual tasks for dependency graphs. We evaluate the use of our visualization through a command line-centered study, comparing it to the system's two existing approaches. We observe that despite the limitations of the ASCII representation, our visualization is preferred by participants when approached from a command line interface workflow.U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-746358]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    • …
    corecore