1,135 research outputs found

    An Iterative Soft Decision Based LR-Aided MIMO Detector

    Get PDF
    The demand for wireless and high-rate communication system is increasing gradually and multiple-input-multiple-output (MIMO) is one of the feasible solutions to accommodate the growing demand for its spatial multiplexing and diversity gain. However, with high number of antennas, the computational and hardware complexity of MIMO increases exponentially. This accumulating complexity is a paramount problem in MIMO detection system directly leading to large power consumption. Hence, the major focus of this dissertation is algorithmic and hardware development of MIMO decoder with reduced complexity for both real and complex domain, which can be a beneficial solution with power efficiency and high throughput. Both hard and soft domain MIMO detectors are considered. The use of lattice reduction (LR) algorithm and on-demand-child-expansion for the reduction of noise propagation and node calculation respectively are the two of the key features of our developed architecture, presented in this literature. The real domain iterative soft MIMO decoding algorithm, simulated for 4 × 4 MIMO with different modulation scheme, achieves 1.1 to 2.7 dB improvement over Lease Sphere Decoder (LSD) and more than 8x reduction in list size, K as well as complexity of the detector. Next, the iterative real domain K-Best decoder is expanded to the complex domain with new detection scheme. It attains 6.9 to 8.0 dB improvement over real domain K-Best decoder and 1.4 to 2.5 dB better performance over conventional complex decoder for 8 × 8 MIMO with 64 QAM modulation scheme. Besides K, a new adjustable parameter, Rlimit has been introduced in order to append re-configurability trading-off between complexity and performance. After that, a novel low-power hardware architecture of complex decoder is developed for 8 × 8 MIMO and 64 QAM modulation scheme. The total word length of only 16 bits has been adopted limiting the bit error rate (BER) degradation to 0.3 dB with K and Rlimit equal to 4. The proposed VLSI architecture is modeled in Verilog HDL using Xilinx and synthesized using Synopsys Design Vision in 45 nm CMOS technology. According to the synthesize result, it achieves 1090.8 Mbps throughput with power consumption of 580 mW and latency of 0.33 us. The maximum frequency the design proposed is 181.8 MHz. All of the proposed decoders mentioned above are bounded by the fixed K. Hence, an adaptive real domain K-Best decoder is further developed to achieve the similar performance with less K, thereby reducing the computational complexity of the decoder. It does not require accurate SNR measurement to perform the initial estimation of list size, K. Instead, the difference between the first two minimal distances is considered, which inherently eliminates complexity. In summary, a novel iterative K-Best detector for both real and complex domain with efficient VLSI design is proposed in this dissertation. The results from extensive simulation and VHDL with analysis using Synopsys tool are also presented for justification and validation of the proposed works

    An Iterative Soft Decision Based LR-Aided MIMO Detector

    Get PDF
    The demand for wireless and high-rate communication system is increasing gradually and multiple-input-multiple-output (MIMO) is one of the feasible solutions to accommodate the growing demand for its spatial multiplexing and diversity gain. However, with high number of antennas, the computational and hardware complexity of MIMO increases exponentially. This accumulating complexity is a paramount problem in MIMO detection system directly leading to large power consumption. Hence, the major focus of this dissertation is algorithmic and hardware development of MIMO decoder with reduced complexity for both real and complex domain, which can be a beneficial solution with power efficiency and high throughput. Both hard and soft domain MIMO detectors are considered. The use of lattice reduction (LR) algorithm and on-demand-child-expansion for the reduction of noise propagation and node calculation respectively are the two of the key features of our developed architecture, presented in this literature. The real domain iterative soft MIMO decoding algorithm, simulated for 4 × 4 MIMO with different modulation scheme, achieves 1.1 to 2.7 dB improvement over Lease Sphere Decoder (LSD) and more than 8x reduction in list size, K as well as complexity of the detector. Next, the iterative real domain K-Best decoder is expanded to the complex domain with new detection scheme. It attains 6.9 to 8.0 dB improvement over real domain K-Best decoder and 1.4 to 2.5 dB better performance over conventional complex decoder for 8 × 8 MIMO with 64 QAM modulation scheme. Besides K, a new adjustable parameter, Rlimit has been introduced in order to append re-configurability trading-off between complexity and performance. After that, a novel low-power hardware architecture of complex decoder is developed for 8 × 8 MIMO and 64 QAM modulation scheme. The total word length of only 16 bits has been adopted limiting the bit error rate (BER) degradation to 0.3 dB with K and Rlimit equal to 4. The proposed VLSI architecture is modeled in Verilog HDL using Xilinx and synthesized using Synopsys Design Vision in 45 nm CMOS technology. According to the synthesize result, it achieves 1090.8 Mbps throughput with power consumption of 580 mW and latency of 0.33 us. The maximum frequency the design proposed is 181.8 MHz. All of the proposed decoders mentioned above are bounded by the fixed K. Hence, an adaptive real domain K-Best decoder is further developed to achieve the similar performance with less K, thereby reducing the computational complexity of the decoder. It does not require accurate SNR measurement to perform the initial estimation of list size, K. Instead, the difference between the first two minimal distances is considered, which inherently eliminates complexity. In summary, a novel iterative K-Best detector for both real and complex domain with efficient VLSI design is proposed in this dissertation. The results from extensive simulation and VHDL with analysis using Synopsys tool are also presented for justification and validation of the proposed works

    MIMOシステムにおける格子基底縮小を用いた信号検出法及びその応用に関する研究

    Get PDF
    Multiple-input multiple-output (MIMO) technology has attracted attention in wireless communications, since it provides signi cant increases in data throughput and the high spectral efficiency. MIMO systems employ multiple antennas at both ends of the wireless link, and hence can increase the data rate by transmitting multiple data streams. To exploit the potential gains o ered by MIMO, signal processing involved in a MIMO receiver requires a large computational complexity in order to achieve the optimal performance. In MIMO systems, it is usually required to detect signals jointly as multiple signals are transmitted through multiple signal paths between the transmitter and the receiver. This joint detection becomes the MIMO detection. The maximum likelihood (ML) detection (MLD) is known as the optimal detector in terms of minimizing bit error rate (BER). However, the complexity of MLD obstructs its practical implementation. The common linear detection such as zero-forcing (ZF) or minimum mean squared error (MMSE) o ers a remarkable complexity reduction with performance loss. The non-linear detection, e.g. the successive interference cancellation (SIC), detects each symbol sequentially withthe aid of cancellation operations which remove the interferences from the received signal. The BER performance is improved by using the SIC, but is still inferior to that of the ML detector with low complexity. Numerous suboptimal detection techniques have been proposed to approximately approach the ML performance with relatively lower complexity, such as sphere detection (SD) and QRM-MLD. To look for suboptimal detection algorithm with near optimal performance and a ordable complexity costs for MIMO gains faces a major challenge. Lattice-reduction (LR) is a promising technique to improve the performance of MIMO detection. The LR makes the column vectors of the channel state information (CSI) matrix close to mutually orthogonal. The following signal estimation of the transmitted signal applies the reduced lattice basis instead of the original lattice basis. The most popular LR algorithm is the well-known LLL algorithm, introduced by Lenstra, Lenstra, and Lov asz. Using this algorithm, the LR aided (LRA) detector achieves more reliable signal estimation and hence good BER performance. Combining the LLL algorithm with the conventional linear detection of ZF or MMSE can further improve the BER performance in MIMO systems, especially the LR-MMSE detection. The non-linear detection i.e. SIC based on LR (LR-SIC) is selected from many detection methods since it features the good BER performance. And ordering SIC based on LR (LR-OSIC) can further improve the BER performance with the costs of the implementation of the ordering but requires high computational complexity. In addition, list detection can also obtain much better performance but with a little high computational cost in terms of the list of candidates. However, the expected performance of the several detections isnot satis ed directly like the ML detector, in particular for the high modulation order or the large size MIMO system. This thesis presents our studies about lattice reduction aided detection and its application in MIMO system. Our studies focus on the evaluation of BER performance and the computational complexity. On the hand, we improve the detection algorithms to achieve the near-ML BER performance. On the other hand, we reduce the complexity of the useless computation, such as the exhaustive tree search. We mainly solve three problems existed in the conventional detection methods as - The MLD based on QR decomposition and M-algorithm (QRMMLD) is one solution to relatively reduce the complexity while retaining the ML performance. The number of M in the conventional QRM-MLD is de ned as the number of the survived branches in each detection layer of the tree search, which is a tradeo between complexity and performance. Furthermore, the value of M should be large enough to ensure that the correct symbols exist in the survived branches under the ill-conditioned channel, in particular for the large size MIMO system and the high modulation order. Hence the conventional QRM-MLD still has the problem of high complexity in the better-conditioned channel. - For the LRA MIMO detection, the detection errors are mainly generated from the channel noise and the quantization errors in the signal estimation stage. The quantization step applies the simple rounding operation, which often leads to the quantization error. If this error occurs in a row of the transmit signal, it has to propagate to many symbols in the subsequent signal estimation and result in degrading the BER performance. The conventional LRA MIMO detection has the quantization problem, which obtains less reliable signal estimation and leads to the BER performance loss. - Ordering the column vectors of the LR-reduced channel matrix brings large improvement on the BER performance of the LRSIC due to decreasing the error propagation. However, the improvement of the LR-OSIC is not su cient to approach the ML performance in the large size MIMO system, such as 8 8 MIMO system. Hence, the LR-OSIC detection cannot achieve the near-ML BER performance in the large size of MIMO system. The aim of our researches focuses on the detection algorithm, which provides near-ML BER performance with very low additional complexity. Therefore, we have produced various new results on low complexity MIMO detection with the ideas of lattice reduction aided detection and its application even for large size MIMO system and high modulation order. Our works are to solve the problems in the conventional MIMO detections and to improve the detection algorithms in the signal estimation. As for the future research, these detection schemes combined with the encoding technique lead to interesting and useful applications in the practical MIMO system or massive MIMO.電気通信大学201

    Lattice-Reduction-Aided Detection with Successive Interference Cancelation for Multiuser Space-Time Block Coded Systems

    Get PDF
    Effective detectors with low-complexity are considered for the Alamouti’s multiuser space-time block coded (STBC) systems. Viewing the noiseless received signals from Q users as a lattice with basis vectors being the columns of the total channel matrix H, we apply lattice reduction to transform the original basis into a nearly orthogonal one which improves the decision regions against noise. Then, linear detection using zero-forcing (ZF) and minimum-mean-square-error (MMSE) methods is performed on the transformed basis to detect transmitted signals from the Q users. These lattice-reduction-aided (LRA) linear detectors significantly improve BER of the linear detectors and, more importantly, allow us to achieve full diversity at high Eb/N0 regions

    Novel Efficient Precoding Techniques for Multiuser MIMO Systems

    Get PDF
    In Multiuser MIMO (MU-MIMO) systems, precoding is essential to eliminate or minimize the multiuser interference (MUI). However, the design of a suitable precoding algorithm with good overall performance and low computational complexity at the same time is quite challenging, especially with the increase of system dimensions. In this thesis, we explore the art of novel low-complexity high-performance precoding algorithms with both linear and non-linear processing strategies. Block diagonalization (BD)-type based precoding techniques are well-known linear precoding strategies for MU-MIMO systems. By employing BD-type precoding algorithms at the transmit side, the MU-MIMO broadcast channel is decomposed into multiple independent parallel SU-MIMO channels and achieves the maximum diversity order at high data rates. The main computational complexity of BD-type precoding algorithms comes from two singular value decomposition (SVD) operations, which depend on the number of users and the dimensions of each user's channel matrix. In this thesis, two categories of low-complexity precoding algorithms are proposed to reduce the computational complexity and improve the performance of BD-type precoding algorithms. One is based on multiple LQ decompositions and lattice reductions. The other one is based on a channel inversion technique, QR decompositions, and lattice reductions to decouple the MU-MIMO channel into equivalent SU-MIMO channels. Both of the two proposed precoding algorithms can achieve a comparable sum-rate performance as BD-type precoding algorithms, substantial bit error rate (BER) performance gains, and a simplified receiver structure, while requiring a much lower complexity. Tomlinson-Harashima precoding (THP) is a prominent nonlinear processing technique employed at the transmit side and is a dual to the successive interference cancelation (SIC) detection at the receive side. Like SIC detection, the performance of THP strongly depends on the ordering of the precoded symbols. The optimal ordering algorithm, however, is impractical for MU-MIMO systems with multiple receive antennas. We propose a multi-branch THP (MB-THP) scheme and algorithms that employ multiple transmit processing and ordering strategies along with a selection scheme to mitigate interference in MU-MIMO systems. Two types of multi-branch THP (MB-THP) structures are proposed. The first one employs a decentralized strategy with diagonal weighted filters at the receivers of the users and the second uses a diagonal weighted filter at the transmitter. The MB-MMSE-THP algorithms are also derived based on an extended system model with the aid of an LQ decomposition, which is much simpler compared to the conventional MMSE-THP algorithms. Simulation results show that a better BER performance can be achieved by the proposed MB-MMSE-THP precoder with a small computational complexity increase

    Récepteur itératif pour les systèmes MIMO-OFDM basé sur le décodage sphérique : convergence, performance et complexité

    Get PDF
    Recently, iterative processing has been widely considered to achieve near-capacity performance and reliable high data rate transmission, for future wireless communication systems. However, such an iterative processing poses significant challenges for efficient receiver design. In this thesis, iterative receiver combining multiple-input multiple-output (MIMO) detection with channel decoding is investigated for high data rate transmission. The convergence, the performance and the computational complexity of the iterative receiver for MIMO-OFDM system are considered. First, we review the most relevant hard-output and soft-output MIMO detection algorithms based on sphere decoding, K-Best decoding, and interference cancellation. Consequently, a low-complexity K-best (LCK- Best) based decoder is proposed in order to substantially reduce the computational complexity without significant performance degradation. We then analyze the convergence behaviors of combining these detection algorithms with various forward error correction codes, namely LTE turbo decoder and LDPC decoder with the help of Extrinsic Information Transfer (EXIT) charts. Based on this analysis, a new scheduling order of the required inner and outer iterations is suggested. The performance of the proposed receiver is evaluated in various LTE channel environments, and compared with other MIMO detection schemes. Secondly, the computational complexity of the iterative receiver with different channel coding techniques is evaluated and compared for different modulation orders and coding rates. Simulation results show that our proposed approaches achieve near optimal performance but more importantly it can substantially reduce the computational complexity of the system. From a practical point of view, fixed-point representation is usually used in order to reduce the hardware costs in terms of area, power consumption and execution time. Therefore, we present efficient fixed point arithmetic of the proposed iterative receiver based on LC-KBest decoder. Additionally, the impact of the channel estimation on the system performance is studied. The proposed iterative receiver is tested in a real-time environment using the MIMO WARP platform.Pour permettre l’accroissement de débit et de robustesse dans les futurs systèmes de communication sans fil, les processus itératifs sont de plus considérés dans les récepteurs. Cependant, l’adoption d’un traitement itératif pose des défis importants dans la conception du récepteur. Dans cette thèse, un récepteur itératif combinant les techniques de détection multi-antennes avec le décodage de canal est étudié. Trois aspects sont considérés dans un contexte MIMOOFDM: la convergence, la performance et la complexité du récepteur. Dans un premier temps, nous étudions les différents algorithmes de détection MIMO à décision dure et souple basés sur l’égalisation, le décodage sphérique, le décodage K-Best et l’annulation d’interférence. Un décodeur K-best de faible complexité (LC-K-Best) est proposé pour réduire la complexité sans dégradation significative des performances. Nous analysons ensuite la convergence de la combinaison de ces algorithmes de détection avec différentes techniques de codage de canal, notamment le décodeur turbo et le décodeur LDPC en utilisant le diagramme EXIT. En se basant sur cette analyse, un nouvel ordonnancement des itérations internes et externes nécessaires est proposé. Les performances du récepteur ainsi proposé sont évaluées dans différents modèles de canal LTE, et comparées avec différentes techniques de détection MIMO. Ensuite, la complexité des récepteurs itératifs avec différentes techniques de codage de canal est étudiée et comparée pour différents modulations et rendement de code. Les résultats de simulation montrent que les approches proposées offrent un bon compromis entre performance et complexité. D’un point de vue implémentation, la représentation en virgule fixe est généralement utilisée afin de réduire les coûts en termes de surface, de consommation d’énergie et de temps d’exécution. Nous présentons ainsi une représentation en virgule fixe du récepteur itératif proposé basé sur le décodeur LC K-Best. En outre, nous étudions l’impact de l’estimation de canal sur la performance du système. Finalement, le récepteur MIMOOFDM itératif est testé sur la plateforme matérielle WARP, validant le schéma proposé
    corecore