45,420 research outputs found

    Space Communications Artificial Intelligence for Link Evaluation Terminal (SCAILET)

    Get PDF
    A software application to assis end-users of the Link Evaluation Terminal (LET) for satellite communication is being developed. This software application incorporates artificial intelligence (AI) techniques and will be deployed as an interface to LET. The high burst rate (HBR) LET provides 30 GHz transmitting/20 GHz receiving, 220/110 Mbps capability for wideband communications technology experiments with the Advanced Communications Technology Satellite (ACTS). The HBR LET and ACTS are being developed at the NASA Lewis Research Center. The HBR LET can monitor and evaluate the integrity of the HBR communications uplink and downlink to the ACTS satellite. The uplink HBR transmission is performed by bursting the bit-pattern as a modulated signal to the satellite. By comparing the transmitted bit pattern with the received bit pattern, HBR LET can determine the bit error rate BER) under various atmospheric conditions. An algorithm for power augmentation is applied to enhance the system's BER performance at reduced signal strength caused by adverse conditions. Programming scripts, defined by the design engineer, set up the HBR LET terminal by programming subsystem devices through IEEE488 interfaces. However, the scripts are difficult to use, require a steep learning curve, are cryptic, and are hard to maintain. The combination of the learning curve and the complexities involved with editing the script files may discourage end-users from utilizing the full capabilities of the HBR LET system. An intelligent assistant component of SCAILET that addresses critical end-user needs in the programming of the HBR LET system as anticipated by its developers is described. A close look is taken at the various steps involved in writing ECM software for a C&P, computer and at how the intelligent assistant improves the HBR LET system and enhances the end-user's ability to perform the experiments

    Ship product modelling

    Get PDF
    This paper is a fundamental review of ship product modeling techniques with a focus on determining the state of the art, to identify any shortcomings and propose future directions. The review addresses ship product data representations, product modeling techniques and integration issues, and life phase issues. The most significant development has been the construction of the ship Standard for the Exchange of Product Data (STEP) application protocols. However, difficulty has been observed with respect to the general uptake of the standards, in particular with the application to legacy systems, often resulting in embellishments to the standards and limiting the ability to further exchange the product data. The EXPRESS modeling language is increasingly being superseded by the extensible mark-up language (XML) as a method to map the STEP data, due to its wider support throughout the information technology industry and its more obvious structure and hierarchy. The associated XML files are, however, larger than those produced using the EXPRESS language and make further demands on the already considerable storage required for the ship product model. Seamless integration between legacy applications appears to be difficult to achieve using the current technologies, which often rely on manual interaction for the translation of files. The paper concludes with a discussion of future directions that aim to either solve or alleviate these issues
    • …
    corecore