4,107 research outputs found

    Semi-algebraic geometry of common lines

    Get PDF
    Cryo-electron microscopy is a technique in structural biology for discovering/determining the 3D structure of small molecules. A key step in this process is detecting common lines of intersection between unknown embedded image planes. We intrinsically characterize such common lines in terms of the unembedded geometric data detected in experiments. We show these common lines form a semi-algebraic set, i.e., they are defined by polynomial equalities and inequalities. These polynomials are low degree and, using techniques from spherical geometry, we explicitly derive them in this paper.Comment: Pre-print, comments welcom

    Ramified optimal transportation in geodesic metric spaces

    Full text link
    An optimal transport path may be viewed as a geodesic in the space of probability measures under a suitable family of metrics. This geodesic may exhibit a tree-shaped branching structure in many applications such as trees, blood vessels, draining and irrigation systems. Here, we extend the study of ramified optimal transportation between probability measures from Euclidean spaces to a geodesic metric space. We investigate the existence as well as the behavior of optimal transport paths under various properties of the metric such as completeness, doubling, or curvature upper boundedness. We also introduce the transport dimension of a probability measure on a complete geodesic metric space, and show that the transport dimension of a probability measure is bounded above by the Minkowski dimension and below by the Hausdorff dimension of the measure. Moreover, we introduce a metric, called "the dimensional distance", on the space of probability measures. This metric gives a geometric meaning to the transport dimension: with respect to this metric, the transport dimension of a probability measure equals to the distance from it to any finite atomic probability measure.Comment: 22 pages, 4 figure

    On a family of strong geometric spanners that admit local routing strategies

    Full text link
    We introduce a family of directed geometric graphs, denoted \paz, that depend on two parameters λ\lambda and θ\theta. For 0θ<π20\leq \theta<\frac{\pi}{2} and 1/2<λ<1{1/2} < \lambda < 1, the \paz graph is a strong tt-spanner, with t=1(1λ)cosθt=\frac{1}{(1-\lambda)\cos\theta}. The out-degree of a node in the \paz graph is at most 2π/min(θ,arccos12λ)\lfloor2\pi/\min(\theta, \arccos\frac{1}{2\lambda})\rfloor. Moreover, we show that routing can be achieved locally on \paz. Next, we show that all strong tt-spanners are also tt-spanners of the unit disk graph. Simulations for various values of the parameters λ\lambda and θ\theta indicate that for random point sets, the spanning ratio of \paz is better than the proven theoretical bounds
    corecore