1,607 research outputs found

    Materials Cloud, a platform for open computational science

    Full text link
    Materials Cloud is a platform designed to enable open and seamless sharing of resources for computational science, driven by applications in materials modelling. It hosts 1) archival and dissemination services for raw and curated data, together with their provenance graph, 2) modelling services and virtual machines, 3) tools for data analytics, and pre-/post-processing, and 4) educational materials. Data is citable and archived persistently, providing a comprehensive embodiment of the FAIR principles that extends to computational workflows. Materials Cloud leverages the AiiDA framework to record the provenance of entire simulation pipelines (calculations performed, codes used, data generated) in the form of graphs that allow to retrace and reproduce any computed result. When an AiiDA database is shared on Materials Cloud, peers can browse the interconnected record of simulations, download individual files or the full database, and start their research from the results of the original authors. The infrastructure is agnostic to the specific simulation codes used and can support diverse applications in computational science that transcend its initial materials domain.Comment: 19 pages, 8 figure

    Postgraduate dissertation assessment: Exploring extant use and potential efficacy of visualisations

    Get PDF
    In the context of assessment, two specific challenges face South African academics. The first is that their universities have experienced an unprecedented increase in postgraduate students without a concomitant increase in supervision capacity. The second challenge is that many South African students are studying in a second or third language and struggle to express themselves in English. It is notoriously difficult to write text that is easy to read. Examiners are thus finding it challenging to maintain their own existing high standards of consistency, accuracy and fairness. This paper focuses on identifying a way of making the assessment of dissertations more efficient, while retaining rigour and fairness. In so doing, we want to provide students with a tool that will help them to communicate their research more effectively. In seeking an intervention, we noted the emerging use of visualisation as a communication facilitator in other areas of academia. Given the innate human ability to understand and remember visual representations, and the deep level of cognitive processing required to produce such visualisations, the considered inclusion of visualisations could be the means we are seeking. In this paper we report on an investigation into the extant use and potential usefulness of visualisation in a number of dissertations. We also explore supervisor expectations with respect to the use of visualisation in research reporting. Based on our findings, we propose that a discourse be opened into the deliberate use of visualisation in postgraduate research reporting

    Visualisation of Integrated Patient-Centric Data as Pathways: Enhancing Electronic Medical Records in Clinical Practice

    Get PDF
    Routinely collected data in hospital Electronic Medical Records (EMR) is rich and abundant but often not linked or analysed for purposes other than direct patient care. We have created a methodology to integrate patient-centric data from different EMR systems into clinical pathways that represent the history of all patient interactions with the hospital during the course of a disease and beyond. In this paper, the literature in the area of data visualisation in healthcare is reviewed and a method for visualising the journeys that patients take through care is discussed. Examples of the hidden knowledge that could be discovered using this approach are explored and the main application areas of visualisation tools are identified. This paper also highlights the challenges of collecting and analysing such data and making the visualisations extensively used in the medical domain. This paper starts by presenting the state-of-the-art in visualisation of clinical and other health related data. Then, it describes an example clinical problem and discusses the visualisation tools and techniques created for the utilisation of these data by clinicians and researchers. Finally, we look at the open problems in this area of research and discuss future challenges

    Intergenerational interpretation of the Internet of Things

    Get PDF
    This report investigates how different generations within a household interpret individual members’ data generated by the Internet of Things (IoT). Adopting a mixed methods approach, we are interested in interpretations of the IoT by teenagers, their parents and grandparents, and how they understand and interact with the kinds of data that might be generated by IoT devices. The first part of this document is a technical review that outlines the key existing and envisaged technologies that make up the IoT. It explores the definition and scope of the Internet of Things. Hardware, networking, intelligent objects and Human-Computer Interaction implications are all discussed in detail. The second section focuses on the human perspective, looking at psychological and sociological issues relating to the interpretation of information generated by the IoT. Areas such as privacy, data ambiguity, ageism, and confirmation bias are explored. The third section brings both aspects together, examining how technical and social aspects of the IoT interact in four specific application domains: energy monitoring, groceries and shopping, physical gaming, and sharing experiences. This section also presents three household scenarios developed to communicate and explore the complexities of integrating IoT technologies into family life. The final section draws together all the findings and suggests future research

    Impact in networks and ecosystems: building case studies that make a difference

    Get PDF
    open accessThis toolkit aims to support the building up of case studies that show the impact of project activities aiming to promote innovation and entrepreneurship. The case studies respond to the challenge of understanding what kinds of interventions work in the Southern African region, where, and why. The toolkit has a specific focus on entrepreneurial ecosystems and proposes a method of mapping out the actors and their relationships over time. The aim is to understand the changes that take place in the ecosystems. These changes are seen to be indicators of impact as increased connectivity and activity in ecosystems are key enablers of innovation. Innovations usually happen together with matching social and institutional adjustments, facilitating the translation of inventions into new or improved products and services. Similarly, the processes supporting entrepreneurship are guided by policies implemented in the common framework provided by innovation systems. Overall, policies related to systems of innovation are by nature networking policies applied throughout the socioeconomic framework of society to pool scarce resources and make various sectors work in coordination with each other. Most participating SAIS countries already have some kinds of identifiable systems of innovation in place both on national and regional levels, but the lack of appropriate institutions, policies, financial instruments, human resources, and support systems, together with underdeveloped markets, create inefficiencies and gaps in systemic cooperation and collaboration. In other words, we do not always know what works and what does not. On another level, engaging users and intermediaries at the local level and driving the development of local innovation ecosystems within which local culture, especially in urban settings, has evident impact on how collaboration and competition is both seen and done. In this complex environment, organisations supporting entrepreneurship and innovation often find it difficult to create or apply relevant knowledge and appropriate networking tools, approaches, and methods needed to put their processes to work for broader developmental goals. To further enable these organisations’ work, it is necessary to understand what works and why in a given environment. Enhanced local and regional cooperation promoted by SAIS Innovation Fund projects can generate new data on this little-explored area in Southern Africa. Data-driven knowledge on entrepreneurship and innovation support best practices as well as effective and efficient management of entrepreneurial ecosystems can support replication and inform policymaking, leading thus to a wider impact than just that of the immediate reported projects and initiatives

    Exploring Environmental and Geographical Factors Influencing the Spread of Infectious Diseases with Interactive Maps

    Get PDF
    Publisher Copyright: © 2022 by the authors.Environmental problems due to human activities such as deforestation, urbanisation, and large scale intensive farming are some of the major factors behind the rapid spread of many infectious diseases. This in turn poses significant challenges not only in as regards providing adequate healthcare, but also in supporting healthcare workers, medical researchers, policy makers, and others involved in managing infectious diseases. These challenges include surveillance, tracking of infections, communication of public health knowledge and promotion of behavioural change. Behind these challenges lies a complex set of factors which include not only biomedical and population health determinants but also environmental, climatic, geographic, and socioeconomic variables. While there is broad agreement that these factors are best understood when considered in conjunction, aggregating and presenting diverse information sources requires effective information systems, software tools, and data visualisation. In this article, weargue that interactive maps, which couple geographical information systems and advanced information visualisation techniques, provide a suitable unifying framework for coordinating these tasks. Therefore, we examine how interactive maps can support spatial epidemiological visualisation and modelling involving distributed and dynamic data sources and incorporating temporal aspects of disease spread. Combining spatial and temporal aspects can be crucial in such applications. We discuss these issues in the context of support for disease surveillance in remote regions, utilising tools that facilitate distributed data collection and enable multidisciplinary collaboration, while also providing support for simulation and data analysis. We show that interactive maps deployed on a combination of mobile devices and large screens can provide effective means for collection, sharing, and analysis of health data.Peer reviewe

    Making Research Useful: Current Challenges and Good Practices in Data Visualisation

    Get PDF
    • …
    corecore