12 research outputs found

    Launching of Davydov solitons in protein α-helix spines

    Get PDF
    Biological order provided by α-helical secondary protein structures is an important resource exploitable by living organisms for increasing the efficiency of energy transport. In particular, self-trapping of amide I energy quanta by the induced phonon deformation of the hydrogen-bonded lattice of peptide groups is capable of generating either pinned or moving solitary waves following the Davydov quasiparticle/soliton model. The effect of applied in-phase Gaussian pulses of amide I energy, however, was found to be strongly dependent on the site of application. Moving solitons were only launched when the amide I energy was applied at one of the α-helix ends, whereas pinned solitons were produced in the α-helix interior. In this paper, we describe a general mechanism that launches moving solitons in the interior of the α-helix through phase-modulated Gaussian pulses of amide I energy. We also compare the predicted soliton velocity based on effective soliton mass and the observed soliton velocity in computer simulations for different parameter values of the isotropy of the exciton-phonon interaction. The presented results demonstrate the capacity for explicit control of soliton velocity in protein α-helices, and further support the plausibility of gradual optimization of quantum dynamics for achieving specialized protein functions through natural selection

    Quantum transport and utilization of free energy in protein α\alpha-helices

    Full text link
    The essential biological processes that sustain life are catalyzed by protein nano-engines, which maintain living systems in far-from-equilibrium ordered states. To investigate energetic processes in proteins, we have analyzed the system of generalized Davydov equations that govern the quantum dynamics of multiple amide I exciton quanta propagating along the hydrogen-bonded peptide groups in α\alpha-helices. Computational simulations have confirmed the generation of moving Davydov solitons by applied pulses of amide I energy for protein α\alpha-helices of varying length. The stability and mobility of these solitons depended on the uniformity of dipole-dipole coupling between amide I oscillators, and the isotropy of the exciton-phonon interaction. Davydov solitons were also able to quantum tunnel through massive barriers, or to quantum interfere at collision sites. The results presented here support a nontrivial role of quantum effects in biological systems that lies beyond the mechanistic support of covalent bonds as binding agents of macromolecular structures. Quantum tunneling and interference of Davydov solitons provide catalytically active macromolecular protein complexes with a physical mechanism allowing highly efficient transport, delivery, and utilization of free energy, besides the evolutionary mandate of biological order that supports the existence of such genuine quantum phenomena, and may indeed demarcate the quantum boundaries of life.Comment: 40 pages, 20 figure

    Thermal stability of solitons in protein α-helices

    Get PDF
    Protein α-helices provide an ordered biological environment that is conducive to soliton-assisted energy transport. The nonlinear interaction between amide I excitons and phonon deformations induced in the hydrogen-bonded lattice of peptide groups leads to self-trapping of the amide I energy, thereby creating a localized quasiparticle (soliton) that persists at zero temperature. The presence of thermal noise, however, could destabilize the protein soliton and dissipate its energy within a finite lifetime. In this work, we have computationally solved the system of stochastic differential equations that govern the quantum dynamics of protein solitons at physiological temperature, T=310 K, for either a single isolated α-helix spine of hydrogen bonded peptide groups or the full protein α-helix comprised of three parallel α-helix spines. The simulated stochastic dynamics revealed that although the thermal noise is detrimental for the single isolated α-helix spine, the cooperative action of three amide I exciton quanta in the full protein α-helix ensures soliton lifetime of over 30 ps, during which the amide I energy could be transported along the entire extent of an 18-nm-long α-helix. Thus, macromolecular protein complexes, which are built up of protein α-helices could harness soliton-assisted energy transport at physiological temperature. Because the hydrolysis of a single adenosine triphosphate molecule is able to initiate three amide I exciton quanta, it is feasible that multiquantal protein solitons subserve a variety of specialized physiological functions in living systems

    Quantum tunneling of three-spine solitons through excentric barriers

    Get PDF
    Macromolecular protein complexes catalyze essential physiological processes that sustain life. Various interactions between protein subunits could increase the effective mass of certain peptide groups, thereby compartmentalizing protein α-helices. Here, we study the differential effects of applied massive barriers upon the soliton-assisted energy transport within proteins. We demonstrate that excentric barriers, localized onto a single spine in the protein α-helix, reflect or trap three-spine solitons as effectively as concentric barriers with comparable total mass. Furthermore, wider protein solitons, whose energy is lower, require heavier massive barriers for soliton reflection or trapping. Regulation of energy transport, delivery and utilization at protein active sites could thus be achieved through control of the soliton width, or of the effective mass of the protein subunits

    Quantum transport and utilization of free energy in protein α-helices

    Get PDF
    The essential biological processes that sustain life are catalyzed by protein nano-engines, which maintain living systems in far-from-equilibrium ordered states. To investigate energetic processes in proteins, we have analyzed the system of generalized Davydov equations that govern the quantum dynamics of multiple amide I exciton quanta propagating along the hydrogen-bonded peptide groups in α-helices. Computational simulations have confirmed the generation of moving Davydov solitons by applied pulses of amide I energy for protein α-helices of varying length. The stability and mobility of these solitons depended on the uniformity of dipole-dipole coupling between amide I oscillators, and the isotropy of the exciton-phonon interaction. Davydov solitons were also able to quantum tunnel through massive barriers, or to quantum interfere at collision sites. The results presented here support a nontrivial role of quantum effects in biological systems that lies beyond the mechanistic support of covalent bonds as binding agents of macromolecular structures. Quantum tunneling and interference of Davydov solitons provide catalytically active macromolecular protein complexes with a physical mechanism allowing highly efficient transport, delivery, and utilization of free energy, besides the evolutionary mandate of biological order that supports the existence of such genuine quantum phenomena, and may indeed demarcate the quantum boundaries of life

    Quantum information theoretic approach to the mind–brain problem

    Get PDF
    The brain is composed of electrically excitable neuronal networks regulated by the activity of voltage-gated ion channels. Further portraying the molecular composition of the brain, however, will not reveal anything remotely reminiscent of a feeling, a sensation or a conscious experience. In classical physics, addressing the mind–brain problem is a formidable task because no physical mechanism is able to explain how the brain generates the unobservable, inner psychological world of conscious experiences and how in turn those conscious experiences steer the underlying brain processes toward desired behavior. Yet, this setback does not establish that consciousness is non-physical. Modern quantum physics affirms the interplay between two types of physical entities in Hilbert space: unobservable quantum states, which are vectors describing what exists in the physical world, and quantum observables, which are operators describing what can be observed in quantum measurements. Quantum no-go theorems further provide a framework for studying quantum brain dynamics, which has to be governed by a physically admissible Hamiltonian. Comprising consciousness of unobservable quantum information integrated in quantum brain states explains the origin of the inner privacy of conscious experiences and revisits the dynamic timescale of conscious processes to picosecond conformational transitions of neural biomolecules. The observable brain is then an objective construction created from classical bits of information, which are bound by Holevo’s theorem, and obtained through the measurement of quantum brain observables. Thus, quantum information theory clarifies the distinction between the unobservable mind and the observable brain, and supports a solid physical foundation for consciousness research
    corecore