2,486 research outputs found

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    An Abstract Approach to Consequence Relations

    Full text link
    We generalise the Blok-J\'onsson account of structural consequence relations, later developed by Galatos, Tsinakis and other authors, in such a way as to naturally accommodate multiset consequence. While Blok and J\'onsson admit, in place of sheer formulas, a wider range of syntactic units to be manipulated in deductions (including sequents or equations), these objects are invariably aggregated via set-theoretical union. Our approach is more general in that non-idempotent forms of premiss and conclusion aggregation, including multiset sum and fuzzy set union, are considered. In their abstract form, thus, deductive relations are defined as additional compatible preorderings over certain partially ordered monoids. We investigate these relations using categorical methods, and provide analogues of the main results obtained in the general theory of consequence relations. Then we focus on the driving example of multiset deductive relations, providing variations of the methods of matrix semantics and Hilbert systems in Abstract Algebraic Logic

    Monadic Second-Order Logic with Arbitrary Monadic Predicates

    Full text link
    We study Monadic Second-Order Logic (MSO) over finite words, extended with (non-uniform arbitrary) monadic predicates. We show that it defines a class of languages that has algebraic, automata-theoretic and machine-independent characterizations. We consider the regularity question: given a language in this class, when is it regular? To answer this, we show a substitution property and the existence of a syntactical predicate. We give three applications. The first two are to give very simple proofs that the Straubing Conjecture holds for all fragments of MSO with monadic predicates, and that the Crane Beach Conjecture holds for MSO with monadic predicates. The third is to show that it is decidable whether a language defined by an MSO formula with morphic predicates is regular.Comment: Conference version: MFCS'14, Mathematical Foundations of Computer Science Journal version: ToCL'17, Transactions on Computational Logi

    Defining Recursive Predicates in Graph Orders

    Full text link
    We study the first order theory of structures over graphs i.e. structures of the form (G,τ\mathcal{G},\tau) where G\mathcal{G} is the set of all (isomorphism types of) finite undirected graphs and τ\tau some vocabulary. We define the notion of a recursive predicate over graphs using Turing Machine recognizable string encodings of graphs. We also define the notion of an arithmetical relation over graphs using a total order ≤t\leq_t on the set G\mathcal{G} such that (G,≤t\mathcal{G},\leq_t) is isomorphic to (N,≤\mathbb{N},\leq). We introduce the notion of a \textit{capable} structure over graphs, which is one satisfying the conditions : (1) definability of arithmetic, (2) definability of cardinality of a graph, and (3) definability of two particular graph predicates related to vertex labellings of graphs. We then show any capable structure can define every arithmetical predicate over graphs. As a corollary, any capable structure also defines every recursive graph relation. We identify capable structures which are expansions of graph orders, which are structures of the form (G,≤\mathcal{G},\leq) where ≤\leq is a partial order. We show that the subgraph order i.e. (G,≤s\mathcal{G},\leq_s), induced subgraph order with one constant P3P_3 i.e. (G,≤i,P3\mathcal{G},\leq_i,P_3) and an expansion of the minor order for counting edges i.e. (G,≤m,sameSize(x,y)\mathcal{G},\leq_m,sameSize(x,y)) are capable structures. In the course of the proof, we show the definability of several natural graph theoretic predicates in the subgraph order which may be of independent interest. We discuss the implications of our results and connections to Descriptive Complexity
    • …
    corecore