252 research outputs found

    Privacy-Preserving intrusion detection over network data

    Get PDF
    Effective protection against cyber-attacks requires constant monitoring and analysis of system data such as log files and network packets in an IT infrastructure, which may contain sensitive information. To this end, security operation centers (SOC) are established to detect, analyze, and respond to cyber-security incidents. Security officers at SOC are not necessarily trusted with handling the content of the sensitive and private information, especially in case when SOC services are outsourced as maintaining in-house expertise and capability in cyber-security is expensive. Therefore, an end-to-end security solution is needed for the system data. SOC often utilizes detection models either for known types of attacks or for an anomaly and applies them to the collected data to detect cyber-security incidents. The models are usually constructed from historical data that contains records pertaining to attacks and normal functioning of the IT infrastructure under monitoring; e.g., using machine learning techniques. SOC is also motivated to keep its models confidential for three reasons: i) to capitalize on the models that are its propriety expertise, ii) to protect its detection strategies against adversarial machine learning, in which intelligent and adaptive adversaries carefully manipulate their attack strategy to avoid detection, and iii) the model might have been trained on sensitive information, whereby revealing the model can violate certain laws and regulations. Therefore, detection models are also private. In this dissertation, we propose a scenario in which privacy of both system data and detection models is protected and information leakage is either prevented altogether or quantifiably decreased. Our main approach is to provide an end-to-end encryption for system data and detection models utilizing lattice-based cryptography that allows homomorphic operations over the encrypted data. Assuming that the detection models are previously obtained from training data by SOC, we apply the models to system data homomorphically, whereby the model is encrypted. We take advantage of three different machine learning algorithms to extract intrusion models by training historical data. Using different data sets (two recent data sets, and one outdated but widely used in the intrusion detection literature), the performance of each algorithm is evaluated via the following metrics: i) the time that takes to extract the rules, ii) the time that takes to apply the rules on data homomorphically, iii) the accuracy of the rules in detecting intrusions, and iv) the number of rules. Our experiments demonstrates that the proposed privacy-preserving intrusion detection system (IDS) is feasible in terms of execution times and reliable in terms of accurac

    A Distinguisher-Based Attack of a Homomorphic Encryption Scheme Relying on Reed-Solomon Codes

    Get PDF
    Bogdanov and Lee suggested a homomorphic public-key encryption scheme based on error correcting codes. The underlying public code is a modified Reed-Solomon code obtained from inserting a zero submatrix in the Vandermonde generating matrix defining it. The columns that define this submatrix are kept secret and form a set LL. We give here a distinguisher that detects if one or several columns belong to LL or not. This distinguisher is obtained by considering the code generated by component-wise products of codewords of the public code (the so called "square code"). This operation is applied to punctured versions of this square code obtained by picking a subset II of the whole set of columns. It turns out that the dimension of the punctured square code is directly related to the cardinality of the intersection of II with LL. This allows an attack which recovers the full set LL and which can then decrypt any ciphertext.Comment: 11 page

    Theory and Practice of Cryptography and Network Security Protocols and Technologies

    Get PDF
    In an age of explosive worldwide growth of electronic data storage and communications, effective protection of information has become a critical requirement. When used in coordination with other tools for ensuring information security, cryptography in all of its applications, including data confidentiality, data integrity, and user authentication, is a most powerful tool for protecting information. This book presents a collection of research work in the field of cryptography. It discusses some of the critical challenges that are being faced by the current computing world and also describes some mechanisms to defend against these challenges. It is a valuable source of knowledge for researchers, engineers, graduate and doctoral students working in the field of cryptography. It will also be useful for faculty members of graduate schools and universities

    Homomorphic Encryption and the Approximate GCD Problem

    Get PDF
    With the advent of cloud computing, everyone from Fortune 500 businesses to personal consumers to the US government is storing massive amounts of sensitive data in service centers that may not be trustworthy. It is of vital importance to leverage the benefits of storing data in the cloud while simultaneously ensuring the privacy of the data. Homomorphic encryption allows one to securely delegate the processing of private data. As such, it has managed to hit the sweet spot of academic interest and industry demand. Though the concept was proposed in the 1970s, no cryptosystem realizing this goal existed until Craig Gentry published his PhD thesis in 2009. In this thesis, we conduct a study of the two main methods for construction of homomorphic encryption schemes along with functional encryption and the hard problems upon which their security is based. These hard problems include the Approximate GCD problem (A-GCD), the Learning With Errors problem (LWE), and various lattice problems. In addition, we discuss many of the proposed and in some cases implemented practical applications of these cryptosystems. Finally, we focus on the Approximate GCD problem (A-GCD). This problem forms the basis for the security of Gentry\u27s original cryptosystem but has not yet been linked to more standard cryptographic primitives. After presenting several algorithms in the literature that attempt to solve the problem, we introduce some new algorithms to attack the problem

    Towards compact bandwidth and efficient privacy-preserving computation

    Get PDF
    In traditional cryptographic applications, cryptographic mechanisms are employed to ensure the security and integrity of communication or storage. In these scenarios, the primary threat is usually an external adversary trying to intercept or tamper with the communication between two parties. On the other hand, in the context of privacy-preserving computation or secure computation, the cryptographic techniques are developed with a different goal in mind: to protect the privacy of the participants involved in a computation from each other. Specifically, privacy-preserving computation allows multiple parties to jointly compute a function without revealing their inputs and it has numerous applications in various fields, including finance, healthcare, and data analysis. It allows for collaboration and data sharing without compromising the privacy of sensitive data, which is becoming increasingly important in today's digital age. While privacy-preserving computation has gained significant attention in recent times due to its strong security and numerous potential applications, its efficiency remains its Achilles' heel. Privacy-preserving protocols require significantly higher computational overhead and bandwidth when compared to baseline (i.e., insecure) protocols. Therefore, finding ways to minimize the overhead, whether it be in terms of computation or communication, asymptotically or concretely, while maintaining security in a reasonable manner remains an exciting problem to work on. This thesis is centred around enhancing efficiency and reducing the costs of communication and computation for commonly used privacy-preserving primitives, including private set intersection, oblivious transfer, and stealth signatures. Our primary focus is on optimizing the performance of these primitives.Im Gegensatz zu traditionellen kryptografischen Aufgaben, bei denen Kryptografie verwendet wird, um die Sicherheit und Integrität von Kommunikation oder Speicherung zu gewährleisten und der Gegner typischerweise ein Außenstehender ist, der versucht, die Kommunikation zwischen Sender und Empfänger abzuhören, ist die Kryptografie, die in der datenschutzbewahrenden Berechnung (oder sicheren Berechnung) verwendet wird, darauf ausgelegt, die Privatsphäre der Teilnehmer voreinander zu schützen. Insbesondere ermöglicht die datenschutzbewahrende Berechnung es mehreren Parteien, gemeinsam eine Funktion zu berechnen, ohne ihre Eingaben zu offenbaren. Sie findet zahlreiche Anwendungen in verschiedenen Bereichen, einschließlich Finanzen, Gesundheitswesen und Datenanalyse. Sie ermöglicht eine Zusammenarbeit und Datenaustausch, ohne die Privatsphäre sensibler Daten zu kompromittieren, was in der heutigen digitalen Ära immer wichtiger wird. Obwohl datenschutzbewahrende Berechnung aufgrund ihrer starken Sicherheit und zahlreichen potenziellen Anwendungen in jüngster Zeit erhebliche Aufmerksamkeit erregt hat, bleibt ihre Effizienz ihre Achillesferse. Datenschutzbewahrende Protokolle erfordern deutlich höhere Rechenkosten und Kommunikationsbandbreite im Vergleich zu Baseline-Protokollen (d.h. unsicheren Protokollen). Daher bleibt es eine spannende Aufgabe, Möglichkeiten zu finden, um den Overhead zu minimieren (sei es in Bezug auf Rechen- oder Kommunikationsleistung, asymptotisch oder konkret), während die Sicherheit auf eine angemessene Weise gewährleistet bleibt. Diese Arbeit konzentriert sich auf die Verbesserung der Effizienz und Reduzierung der Kosten für Kommunikation und Berechnung für gängige datenschutzbewahrende Primitiven, einschließlich private Schnittmenge, vergesslicher Transfer und Stealth-Signaturen. Unser Hauptaugenmerk liegt auf der Optimierung der Leistung dieser Primitiven
    corecore