1,579 research outputs found

    Noise Sensitivity of Boolean Functions and Applications to Percolation

    Get PDF
    It is shown that a large class of events in a product probability space are highly sensitive to noise, in the sense that with high probability, the configuration with an arbitrary small percent of random errors gives almost no prediction whether the event occurs. On the other hand, weighted majority functions are shown to be noise-stable. Several necessary and sufficient conditions for noise sensitivity and stability are given. Consider, for example, bond percolation on an n+1n+1 by nn grid. A configuration is a function that assigns to every edge the value 0 or 1. Let ω\omega be a random configuration, selected according to the uniform measure. A crossing is a path that joins the left and right sides of the rectangle, and consists entirely of edges ee with ω(e)=1\omega(e)=1. By duality, the probability for having a crossing is 1/2. Fix an ϵ∈(0,1)\epsilon\in(0,1). For each edge ee, let ω′(e)=ω(e)\omega'(e)=\omega(e) with probability 1−ϵ1-\epsilon, and ω′(e)=1−ω(e)\omega'(e)=1-\omega(e) with probability ϵ\epsilon, independently of the other edges. Let p(τ)p(\tau) be the probability for having a crossing in ω\omega, conditioned on ω′=τ\omega'=\tau. Then for all nn sufficiently large, P{τ:∣p(τ)−1/2∣>ϵ}<ϵP\{\tau : |p(\tau)-1/2|>\epsilon\}<\epsilon.Comment: To appear in Inst. Hautes Etudes Sci. Publ. Mat

    On the Sensitivity Conjecture

    Get PDF
    The sensitivity of a Boolean function f:{0,1}^n -> {0,1} is the maximal number of neighbors a point in the Boolean hypercube has with different f-value. Roughly speaking, the block sensitivity allows to flip a set of bits (called a block) rather than just one bit, in order to change the value of f. The sensitivity conjecture, posed by Nisan and Szegedy (CC, 1994), states that the block sensitivity, bs(f), is at most polynomial in the sensitivity, s(f), for any Boolean function f. A positive answer to the conjecture will have many consequences, as the block sensitivity is polynomially related to many other complexity measures such as the certificate complexity, the decision tree complexity and the degree. The conjecture is far from being understood, as there is an exponential gap between the known upper and lower bounds relating bs(f) and s(f). We continue a line of work started by Kenyon and Kutin (Inf. Comput., 2004), studying the l-block sensitivity, bs_l(f), where l bounds the size of sensitive blocks. While for bs_2(f) the picture is well understood with almost matching upper and lower bounds, for bs_3(f) it is not. We show that any development in understanding bs_3(f) in terms of s(f) will have great implications on the original question. Namely, we show that either bs(f) is at most sub-exponential in s(f) (which improves the state of the art upper bounds) or that bs_3(f) >= s(f){3-epsilon} for some Boolean functions (which improves the state of the art separations). We generalize the question of bs(f) versus s(f) to bounded functions f:{0,1}^n -> [0,1] and show an analog result to that of Kenyon and Kutin: bs_l(f) = O(s(f))^l. Surprisingly, in this case, the bounds are close to being tight. In particular, we construct a bounded function f:{0,1}^n -> [0, 1] with bs(f) n/log(n) and s(f) = O(log(n)), a clear counterexample to the sensitivity conjecture for bounded functions. Finally, we give a new super-quadratic separation between sensitivity and decision tree complexity by constructing Boolean functions with DT(f) >= s(f)^{2.115}. Prior to this work, only quadratic separations, DT(f) = s(f)^2, were known

    Arctic octahedron in three-dimensional rhombus tilings and related integer solid partitions

    Full text link
    Three-dimensional integer partitions provide a convenient representation of codimension-one three-dimensional random rhombus tilings. Calculating the entropy for such a model is a notoriously difficult problem. We apply transition matrix Monte Carlo simulations to evaluate their entropy with high precision. We consider both free- and fixed-boundary tilings. Our results suggest that the ratio of free- and fixed-boundary entropies is σfree/σfixed=3/2\sigma_{free}/\sigma_{fixed}=3/2, and can be interpreted as the ratio of the volumes of two simple, nested, polyhedra. This finding supports a conjecture by Linde, Moore and Nordahl concerning the ``arctic octahedron phenomenon'' in three-dimensional random tilings
    • …
    corecore