48,403 research outputs found

    Consequences of Pure Point Diffraction Spectra for Multiset Substitution Systems

    Full text link
    There is a growing body of results in the theory of discrete point sets and tiling systems giving conditions under which such systems are pure point diffractive. Here we look at the opposite direction: what can we infer about a discrete point set or tiling, defined through a primitive substitution system, given that it is pure point diffractive? Our basic objects are Delone multisets and tilings, which are self-replicating under a primitive substitution system of affine mappings with a common expansive map QQ. Our first result gives a partial answer to a question of Lagarias and Wang: we characterize repetitive substitution Delone multisets that can be represented by substitution tilings using a concept of "legal cluster". This allows us to move freely between both types of objects. Our main result is that for lattice substitution multiset systems (in arbitrary dimensions) being a regular model set is not only sufficient for having pure point spectrum--a known fact--but is also necessary. This completes a circle of equivalences relating pure point dynamical and diffraction spectra, modular coincidence, and model sets for lattice substitution systems begun by the first two authors of this paper.Comment: 36 page

    Controlled Fuzzy Parallel Rewriting

    Get PDF
    We study a Lindenmayer-like parallel rewriting system to model the growth of filaments (arrays of cells) in which developmental errors may occur. In essence this model is the fuzzy analogue of the derivation-controlled iteration grammar. Under minor assumptions on the family of control languages and on the family of fuzzy languages in the underlying iteration grammar, we show (i) regular control does not provide additional generating power to the model, (ii) the number of fuzzy substitutions in the underlying iteration grammar can be reduced to two, and (iii) the resulting family of fuzzy languages possesses strong closure properties, viz. it is a full hyper-AFFL, i.e., a hyper-algebraically closed full Abstract Family of Fuzzy Languages

    Limit-(quasi)periodic point sets as quasicrystals with p-adic internal spaces

    Full text link
    Model sets (or cut and project sets) provide a familiar and commonly used method of constructing and studying nonperiodic point sets. Here we extend this method to situations where the internal spaces are no longer Euclidean, but instead spaces with p-adic topologies or even with mixed Euclidean/p-adic topologies. We show that a number of well known tilings precisely fit this form, including the chair tiling and the Robinson square tilings. Thus the scope of the cut and project formalism is considerably larger than is usually supposed. Applying the powerful consequences of model sets we derive the diffractive nature of these tilings.Comment: 11 pages, 2 figures; dedicated to Peter Kramer on the occasion of his 65th birthda

    A Glimpse at Mathematical Diffraction Theory

    Full text link
    Mathematical diffraction theory is concerned with the analysis of the diffraction measure of a translation bounded complex measure ω\omega. It emerges as the Fourier transform of the autocorrelation measure of ω\omega. The mathematically rigorous approach has produced a number of interesting results in the context of perfect and random systems, some of which are summarized here.Comment: 6 pages; Invited talk at QTS2, Krakow, July 2001; World Scientific proceedings LaTeX styl

    Tree Regular Model Checking for Lattice-Based Automata

    Get PDF
    Tree Regular Model Checking (TRMC) is the name of a family of techniques for analyzing infinite-state systems in which states are represented by terms, and sets of states by Tree Automata (TA). The central problem in TRMC is to decide whether a set of bad states is reachable. The problem of computing a TA representing (an over- approximation of) the set of reachable states is undecidable, but efficient solutions based on completion or iteration of tree transducers exist. Unfortunately, the TRMC framework is unable to efficiently capture both the complex structure of a system and of some of its features. As an example, for JAVA programs, the structure of a term is mainly exploited to capture the structure of a state of the system. On the counter part, integers of the java programs have to be encoded with Peano numbers, which means that any algebraic operation is potentially represented by thousands of applications of rewriting rules. In this paper, we propose Lattice Tree Automata (LTAs), an extended version of tree automata whose leaves are equipped with lattices. LTAs allow us to represent possibly infinite sets of interpreted terms. Such terms are capable to represent complex domains and related operations in an efficient manner. We also extend classical Boolean operations to LTAs. Finally, as a major contribution, we introduce a new completion-based algorithm for computing the possibly infinite set of reachable interpreted terms in a finite amount of time.Comment: Technical repor

    Kinematic Diffraction from a Mathematical Viewpoint

    Full text link
    Mathematical diffraction theory is concerned with the analysis of the diffraction image of a given structure and the corresponding inverse problem of structure determination. In recent years, the understanding of systems with continuous and mixed spectra has improved considerably. Simultaneously, their relevance has grown in practice as well. In this context, the phenomenon of homometry shows various unexpected new facets. This is particularly so for systems with stochastic components. After the introduction to the mathematical tools, we briefly discuss pure point spectra, based on the Poisson summation formula for lattice Dirac combs. This provides an elegant approach to the diffraction formulas of infinite crystals and quasicrystals. We continue by considering classic deterministic examples with singular or absolutely continuous diffraction spectra. In particular, we recall an isospectral family of structures with continuously varying entropy. We close with a summary of more recent results on the diffraction of dynamical systems of algebraic or stochastic origin.Comment: 30 pages, invited revie
    • …
    corecore