39,159 research outputs found

    Solving exponential diophantine equations using lattice basis reduction algorithms

    Get PDF
    Let S be the set of all positive integers with prime divisors from a fixed finite set of primes. Algorithms are given for solving the diophantine inequality 0< x − y < yδ in x, y S for fixed δ (0, 1), and for the diophantine equation x + Y = z in x, y, z S. The method is based on multi-dimensional diophantine approximation, in the real and p-adic case, respectively. The main computational tool is the L3-Basis Reduction Algorithm. Elaborate examples are presented

    Critical Slowing-Down in SU(2)SU(2) Landau Gauge-Fixing Algorithms

    Get PDF
    We study the problem of critical slowing-down for gauge-fixing algorithms (Landau gauge) in SU(2)SU(2) lattice gauge theory on a 22-dimensional lattice. We consider five such algorithms, and lattice sizes ranging from 828^{2} to 36236^{2} (up to 64264^2 in the case of Fourier acceleration). We measure four different observables and we find that for each given algorithm they all have the same relaxation time within error bars. We obtain that: the so-called {\em Los Alamos} method has dynamic critical exponent z2z \approx 2, the {\em overrelaxation} method and the {\em stochastic overrelaxation} method have z1z \approx 1, the so-called {\em Cornell} method has zz slightly smaller than 11 and the {\em Fourier acceleration} method completely eliminates critical slowing-down. A detailed discussion and analysis of the tuning of these algorithms is also presented.Comment: 40 pages (including 10 figures). A few modifications, incorporating referee's suggestions, without the length reduction required for publicatio

    Integer-Forcing MIMO Linear Receivers Based on Lattice Reduction

    Full text link
    A new architecture called integer-forcing (IF) linear receiver has been recently proposed for multiple-input multiple-output (MIMO) fading channels, wherein an appropriate integer linear combination of the received symbols has to be computed as a part of the decoding process. In this paper, we propose a method based on Hermite-Korkine-Zolotareff (HKZ) and Minkowski lattice basis reduction algorithms to obtain the integer coefficients for the IF receiver. We show that the proposed method provides a lower bound on the ergodic rate, and achieves the full receive diversity. Suitability of complex Lenstra-Lenstra-Lovasz (LLL) lattice reduction algorithm (CLLL) to solve the problem is also investigated. Furthermore, we establish the connection between the proposed IF linear receivers and lattice reduction-aided MIMO detectors (with equivalent complexity), and point out the advantages of the former class of receivers over the latter. For the 2×22 \times 2 and 4×44\times 4 MIMO channels, we compare the coded-block error rate and bit error rate of the proposed approach with that of other linear receivers. Simulation results show that the proposed approach outperforms the zero-forcing (ZF) receiver, minimum mean square error (MMSE) receiver, and the lattice reduction-aided MIMO detectors.Comment: 9 figures and 11 pages. Modified the title, abstract and some parts of the paper. Major change from v1: Added new results on applicability of the CLLL reductio

    On the Lattice Distortion Problem

    Get PDF
    We introduce and study the \emph{Lattice Distortion Problem} (LDP). LDP asks how "similar" two lattices are. I.e., what is the minimal distortion of a linear bijection between the two lattices? LDP generalizes the Lattice Isomorphism Problem (the lattice analogue of Graph Isomorphism), which simply asks whether the minimal distortion is one. As our first contribution, we show that the distortion between any two lattices is approximated up to a nO(logn)n^{O(\log n)} factor by a simple function of their successive minima. Our methods are constructive, allowing us to compute low-distortion mappings that are within a 2O(nloglogn/logn)2^{O(n \log \log n/\log n)} factor of optimal in polynomial time and within a nO(logn)n^{O(\log n)} factor of optimal in singly exponential time. Our algorithms rely on a notion of basis reduction introduced by Seysen (Combinatorica 1993), which we show is intimately related to lattice distortion. Lastly, we show that LDP is NP-hard to approximate to within any constant factor (under randomized reductions), by a reduction from the Shortest Vector Problem.Comment: This is the full version of a paper that appeared in ESA 201
    corecore