375 research outputs found

    ASCR/HEP Exascale Requirements Review Report

    Full text link
    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio

    Platform independent profiling of a QCD code

    Get PDF
    The supercomputing platforms available for high performance computing based research evolve at a great rate. However, this rapid development of novel technologies requires constant adaptations and optimizations of the existing codes for each new machine architecture. In such context, minimizing time of efficiently porting the code on a new platform is of crucial importance. A possible solution for this common challenge is to use simulations of the application that can assist in detecting performance bottlenecks. Due to prohibitive costs of classical cycle-accurate simulators, coarse-grain simulations are more suitable for large parallel and distributed systems. We present a procedure of implementing the profiling for openQCD code [1] through simulation, which will enable the global reduction of the cost of profiling and optimizing this code commonly used in the lattice QCD community. Our approach is based on well-known SimGrid simulator [2], which allows for fast and accurate performance predictions of HPC codes. Additionally, accurate estimations of the program behavior on some future machines, not yet accessible to us, are anticipated

    Towards Lattice Quantum Chromodynamics on FPGA devices

    Get PDF
    In this paper we describe a single-node, double precision Field Programmable Gate Array (FPGA) implementation of the Conjugate Gradient algorithm in the context of Lattice Quantum Chromodynamics. As a benchmark of our proposal we invert numerically the Dirac-Wilson operator on a 4-dimensional grid on three Xilinx hardware solutions: Zynq Ultrascale+ evaluation board, the Alveo U250 accelerator and the largest device available on the market, the VU13P device. In our implementation we separate software/hardware parts in such a way that the entire multiplication by the Dirac operator is performed in hardware, and the rest of the algorithm runs on the host. We find out that the FPGA implementation can offer a performance comparable with that obtained using current CPU or Intel's many core Xeon Phi accelerators. A possible multiple node FPGA-based system is discussed and we argue that power-efficient High Performance Computing (HPC) systems can be implemented using FPGA devices only.Comment: 17 pages, 4 figure

    Status and Future Perspectives for Lattice Gauge Theory Calculations to the Exascale and Beyond

    Full text link
    In this and a set of companion whitepapers, the USQCD Collaboration lays out a program of science and computing for lattice gauge theory. These whitepapers describe how calculation using lattice QCD (and other gauge theories) can aid the interpretation of ongoing and upcoming experiments in particle and nuclear physics, as well as inspire new ones.Comment: 44 pages. 1 of USQCD whitepapers

    Design and optimization of a portable LQCD Monte Carlo code using OpenACC

    Full text link
    The present panorama of HPC architectures is extremely heterogeneous, ranging from traditional multi-core CPU processors, supporting a wide class of applications but delivering moderate computing performance, to many-core GPUs, exploiting aggressive data-parallelism and delivering higher performances for streaming computing applications. In this scenario, code portability (and performance portability) become necessary for easy maintainability of applications; this is very relevant in scientific computing where code changes are very frequent, making it tedious and prone to error to keep different code versions aligned. In this work we present the design and optimization of a state-of-the-art production-level LQCD Monte Carlo application, using the directive-based OpenACC programming model. OpenACC abstracts parallel programming to a descriptive level, relieving programmers from specifying how codes should be mapped onto the target architecture. We describe the implementation of a code fully written in OpenACC, and show that we are able to target several different architectures, including state-of-the-art traditional CPUs and GPUs, with the same code. We also measure performance, evaluating the computing efficiency of our OpenACC code on several architectures, comparing with GPU-specific implementations and showing that a good level of performance-portability can be reached.Comment: 26 pages, 2 png figures, preprint of an article submitted for consideration in International Journal of Modern Physics

    QCD simulations with staggered fermions on GPUs

    Full text link
    We report on our implementation of the RHMC algorithm for the simulation of lattice QCD with two staggered flavors on Graphics Processing Units, using the NVIDIA CUDA programming language. The main feature of our code is that the GPU is not used just as an accelerator, but instead the whole Molecular Dynamics trajectory is performed on it. After pointing out the main bottlenecks and how to circumvent them, we discuss the obtained performances. We present some preliminary results regarding OpenCL and multiGPU extensions of our code and discuss future perspectives.Comment: 22 pages, 14 eps figures, final version to be published in Computer Physics Communication
    corecore