518 research outputs found

    Lattice Points in Algebraic Cross-polytopes and Simplices

    Get PDF
    The number of lattice points , as a function of the real variable is studied, where belongs to a special class of algebraic cross-polytopes and simplices. It is shown that the number of lattice points can be approximated by an explicitly given polynomial of t depending only on P. The error term is related to a simultaneous Diophantine approximation problem for algebraic numbers, as in Schmidt's theorem. The main ingredients of the proof are a Poisson summation formula for general algebraic polytopes, and a representation of the Fourier transform of the characteristic function of an arbitrary simplex in the form of a complex line integral

    Experimental study of energy-minimizing point configurations on spheres

    Full text link
    In this paper we report on massive computer experiments aimed at finding spherical point configurations that minimize potential energy. We present experimental evidence for two new universal optima (consisting of 40 points in 10 dimensions and 64 points in 14 dimensions), as well as evidence that there are no others with at most 64 points. We also describe several other new polytopes, and we present new geometrical descriptions of some of the known universal optima.Comment: 41 pages, 12 figures, to appear in Experimental Mathematic

    Extremal properties for dissections of convex 3-polytopes

    Get PDF
    A dissection of a convex d-polytope is a partition of the polytope into d-simplices whose vertices are among the vertices of the polytope. Triangulations are dissections that have the additional property that the set of all its simplices forms a simplicial complex. The size of a dissection is the number of d-simplices it contains. This paper compares triangulations of maximal size with dissections of maximal size. We also exhibit lower and upper bounds for the size of dissections of a 3-polytope and analyze extremal size triangulations for specific non-simplicial polytopes: prisms, antiprisms, Archimedean solids, and combinatorial d-cubes.Comment: 19 page
    corecore