4 research outputs found

    Lattice nonembeddings and intervals of the recursively enumerable degrees

    Get PDF
    AbstractLet b and c be r.e. Turing degrees such that b>c. We show that there is an r.e. degree a such that b>a>c and all lattices containing a critical triple, including the lattice M5, cannot be embedded into the interval [c, a]

    Computability Theory

    Get PDF
    Computability is one of the fundamental notions of mathematics, trying to capture the effective content of mathematics. Starting from Gödel’s Incompleteness Theorem, it has now blossomed into a rich area with strong connections with other areas of mathematical logic as well as algebra and theoretical computer science

    Multiple Permitting and Bounded Turing Reducibilities

    Get PDF
    We look at various properties of the computably enumerable (c.e.) not totally ω-c.e. Turing degrees. In particular, we are interested in the variant of multiple permitting given by those degrees. We define a property of left-c.e. sets called universal similarity property which can be viewed as a universal or uniform version of the property of array noncomputable c.e. sets of agreeing with any c.e. set on some component of a very strong array. Using a multiple permitting argument, we prove that the Turing degrees of the left-c.e. sets with the universal similarity property coincide with the c.e. not totally ω-c.e. degrees. We further introduce and look at various notions of socalled universal array noncomputability and show that c.e. sets with those properties can be found exactly in the c.e. not totally ω-c.e. Turing degrees and that they guarantee a special type of multiple permitting called uniform multiple permitting. We apply these properties of the c.e. not totally ω-c.e. degrees to give alternative proofs of well-known results on those degrees as well as to prove new results. E.g., we show that a c.e. Turing degree contains a left-c.e. set which is not cl-reducible to any complex left-c.e. set if and only if it is not totally ω-c.e. Furthermore, we prove that the nondistributive finite lattice S7 can be embedded into the c.e. Turing degrees precisely below any c.e. not totally ω-c.e. degree. We further look at the question of join preservation for bounded Turing reducibilities r and r′ such that r is stronger than r′. We say that join preservation holds for two reducibilities r and r′ if every join in the c.e. r-degrees is also a join in the c.e. r′-degrees. We consider the class of monotone admissible (uniformly) bounded Turing reducibilities, i.e., the reflexive and transitive Turing reducibilities with use bounded by a function that is contained in a (uniformly computable) family of strictly increasing computable functions. This class contains for example identity bounded Turing (ibT-) and computable Lipschitz (cl-) reducibility. Our main result of Chapter 3 is that join preservation fails for cl and any strictly weaker monotone admissible uniformly bounded Turing reducibility. We also look at the dual question of meet preservation and show that for all monotone admissible bounded Turing reducibilities r and r′ such that r is stronger than r′, meet preservation holds. Finally, we completely solve the question of join and meet preservation in the classical reducibilities 1, m, tt, wtt and T

    Joins and Meets in the Partial Orders of the Computably Enumerable ibT- and cl-Degrees

    Get PDF
    A bounded reducibility is a preorder on the power set of the integers which is obtained from Turing reducibility by the additional requirement that, for a reduction of A to B, for every input x the oracle B is only asked oracle queries y < f(x)+1, where f is from some given set F of total computable functions. The most general example of a bounded reducibility is weak-truth-table reducibility, where F is just the set of all computable functions. In this thesis we study the so-called strongly bounded reducibilites, which are obtained by choosing F={id} and F={id+c: c constant}, respectively (where id is the identity function). We start by giving a machine-independent characterisation of these reducibilities, define the degree structures of the computably enumerable ibT- and cl-degrees and review some important properties of ibT- and cl-reducibility concerning strictly increasing computable functions (called shifts) and the permitting method. Then we turn to the degree structures mentioned above, and in particular to existence and nonexistence of joins and meets of a finite set of degrees. As Barmpalias and independently Fan and Lu have shown, these structures are not upper semi-lattices; it is also known that they are not lower semi-lattices. We extend these results by showing that the existence of a join or meet of n degrees does in general not imply the existence of a join or meet, respectively, of any subset containining more than one element of these degrees. We also show that even if deg(A) and deg(B) have a join, there is no uniform way to compute a member of this join from A and B, contrasting the join in the Turing degrees. We conclude this part by looking at the substructure which consists of the degrees of simple sets and show that this structure is not closed with respect to the join operation. This is the dual of a theorem of Ambos-Spies stating that the simple degrees are not closed with respect to meets. Next, we investigate lattice embeddings into the c.e. r-degrees. Due to an observation of Ambos-Spies, the proof that every finite distributive lattice can be embedded into the computably enumerable Turing degrees carries over to the c.e. r-degrees. We show that the smallest nondistributive lattices N5 and M3 can also be embedded, but only the N5 can be embedded preserving the least element. Since every nondistributive lattice contains at least one of these two lattices as a sublattice, this motivates the conjecture that every finite lattice can be embedded. We show this for two other nondistributive lattices, the S7 und S8. Finally, we compare the c.e. ibT- and c.e. cl-degrees and prove that these are not elementarily equivalent. To show this, we study under which conditions on two degrees a and c with a<c it holds that there exists a degree b<c such that c is the join of a and b. In this context we also show that, while shifts provide a simple method to produce a lesser r-degree a to some given noncomputable r-degree c, there is no computable shift which uniformly produces such an a with the additional property that no degree b as above exists
    corecore