2,399 research outputs found

    BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices

    Full text link
    In this paper the elementary moves of the BFACF-algorithm for lattice polygons are generalised to elementary moves of BFACF-style algorithms for lattice polygons in the body-centred (BCC) and face-centred (FCC) cubic lattices. We prove that the ergodicity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice. Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices

    Embeddings and immersions of tropical curves

    Full text link
    We construct immersions of trivalent abstract tropical curves in the Euclidean plane and embeddings of all abstract tropical curves in higher dimensional Euclidean space. Since not all curves have an embedding in the plane, we define the tropical crossing number of an abstract tropical curve to be the minimum number of self-intersections, counted with multiplicity, over all its immersions in the plane. We show that the tropical crossing number is at most quadratic in the number of edges and this bound is sharp. For curves of genus up to two, we systematically compute the crossing number. Finally, we use our immersed tropical curves to construct totally faithful nodal algebraic curves via lifting results of Mikhalkin and Shustin.Comment: 23 pages, 14 figures, final submitted versio

    Planar Ising model at criticality: state-of-the-art and perspectives

    Full text link
    In this essay, we briefly discuss recent developments, started a decade ago in the seminal work of Smirnov and continued by a number of authors, centered around the conformal invariance of the critical planar Ising model on Z2\mathbb{Z}^2 and, more generally, of the critical Z-invariant Ising model on isoradial graphs (rhombic lattices). We also introduce a new class of embeddings of general weighted planar graphs (s-embeddings), which might, in particular, pave the way to true universality results for the planar Ising model.Comment: 19 pages (+ references), prepared for the Proceedings of ICM2018. Second version: two references added, a few misprints fixe

    Approximation of conformal mappings by circle patterns

    Full text link
    A circle pattern is a configuration of circles in the plane whose combinatorics is given by a planar graph G such that to each vertex of G corresponds a circle. If two vertices are connected by an edge in G, the corresponding circles intersect with an intersection angle in (0,π)(0,\pi). Two sequences of circle patterns are employed to approximate a given conformal map gg and its first derivative. For the domain of gg we use embedded circle patterns where all circles have the same radius decreasing to 0 and which have uniformly bounded intersection angles. The image circle patterns have the same combinatorics and intersection angles and are determined from boundary conditions (radii or angles) according to the values of gg' (g|g'| or argg\arg g'). For quasicrystallic circle patterns the convergence result is strengthened to CC^\infty-convergence on compact subsets.Comment: 36 pages, 7 figure

    Quantum Gravity and Matter: Counting Graphs on Causal Dynamical Triangulations

    Get PDF
    An outstanding challenge for models of non-perturbative quantum gravity is the consistent formulation and quantitative evaluation of physical phenomena in a regime where geometry and matter are strongly coupled. After developing appropriate technical tools, one is interested in measuring and classifying how the quantum fluctuations of geometry alter the behaviour of matter, compared with that on a fixed background geometry. In the simplified context of two dimensions, we show how a method invented to analyze the critical behaviour of spin systems on flat lattices can be adapted to the fluctuating ensemble of curved spacetimes underlying the Causal Dynamical Triangulations (CDT) approach to quantum gravity. We develop a systematic counting of embedded graphs to evaluate the thermodynamic functions of the gravity-matter models in a high- and low-temperature expansion. For the case of the Ising model, we compute the series expansions for the magnetic susceptibility on CDT lattices and their duals up to orders 6 and 12, and analyze them by ratio method, Dlog Pad\'e and differential approximants. Apart from providing evidence for a simplification of the model's analytic structure due to the dynamical nature of the geometry, the technique introduced can shed further light on criteria \`a la Harris and Luck for the influence of random geometry on the critical properties of matter systems.Comment: 40 pages, 15 figures, 13 table
    corecore