320 research outputs found

    A Model of Human Categorization and Similarity Based Upon Category Theory

    Get PDF
    Categorization and the judgement of similarity are fundamental in cognition. We propose that these and other activities are based upon an underlying structure of knowledge, or concept representation, in the brain. Further, we propose that this structure can be represented mathematically in a declarative form via category theory, the mathematical theory of structure. We test the resulting mathematical model in an experiment in which human subjects provide judgements of similarity for pairs of line drawings using a numerical scale to represent degrees of similarity. The resulting numerical similarities are compared with those derived from the category-theoretic model by comparing diagrams. The diagrams represent distributed concept structures underlying the line drawings. To compare with a more conventional analysis technique, we also compare the human judgements with those provided by a two-dimensional feature space model equipped with a distance metric for the line drawings. The results are equally favorable for both models. Because of this and the putative explanatory power of the category-theoretic model, we propose that this model is worthy of further exploration as a mathematical model for cognitive science

    Torsors and ternary Moufang loops arising in projective geometry

    Get PDF
    We give an interpretation of the construction of torsors from preceding work (Bertram, Kinyon: Associative Geometries. I, J. Lie Theory 20) in terms of classical projective geometry. For the Desarguesian case, this leads to a reformulation of certain results from lot.cit., whereas for the Moufang case the result is new. But even in the Desarguesian case it sheds new light on the relation between the lattice structure and the algebraic structures of a projective space.Comment: 15 p., 5 figure

    Towards concept analysis in categories: limit inferior as algebra, limit superior as coalgebra

    Get PDF
    While computer programs and logical theories begin by declaring the concepts of interest, be it as data types or as predicates, network computation does not allow such global declarations, and requires *concept mining* and *concept analysis* to extract shared semantics for different network nodes. Powerful semantic analysis systems have been the drivers of nearly all paradigm shifts on the web. In categorical terms, most of them can be described as bicompletions of enriched matrices, generalizing the Dedekind-MacNeille-style completions from posets to suitably enriched categories. Yet it has been well known for more than 40 years that ordinary categories themselves in general do not permit such completions. Armed with this new semantical view of Dedekind-MacNeille completions, and of matrix bicompletions, we take another look at this ancient mystery. It turns out that simple categorical versions of the *limit superior* and *limit inferior* operations characterize a general notion of Dedekind-MacNeille completion, that seems to be appropriate for ordinary categories, and boils down to the more familiar enriched versions when the limits inferior and superior coincide. This explains away the apparent gap among the completions of ordinary categories, and broadens the path towards categorical concept mining and analysis, opened in previous work.Comment: 22 pages, 5 figures and 9 diagram

    Hurwitz equivalence of braid monodromies and extremal elliptic surfaces

    Get PDF
    We discuss the equivalence between the categories of certain ribbon graphs and subgroups of the modular group Γ\Gamma and use it to construct exponentially large families of not Hurwitz equivalent simple braid monodromy factorizations of the same element. As an application, we also obtain exponentially large families of {\it topologically} distinct algebraic objects such as extremal elliptic surfaces, real trigonal curves, and real elliptic surfaces
    corecore