7,042 research outputs found

    Wetting gradient induced separation of emulsions: A combined experimental and lattice Boltzmann computer simulation study

    Full text link
    Guided motion of emulsions is studied via combined experimental and theoretical investigations. The focus of the work is on basic issues related to driving forces generated via a step-wise (abrupt) change in wetting properties of the substrate along a given spatial direction. Experiments on binary emulsions unambiguously show that selective wettability of the one of the fluid components (water in our experiments) with respect to the two different parts of the substrate is sufficient in order to drive the separation process. These studies are accompanied by approximate analytic arguments as well as lattice Boltzmann computer simulations, focusing on effects of a wetting gradient on internal droplet dynamics as well as its relative strength compared to volumetric forces driving the fluid flow. These theoretical investigations show qualitatively different dependence of wetting gradient induced forces on contact angle and liquid volume in the case of an open substrate as opposed to a planar channel. In particular, for the parameter range of our experiments, slit geometry is found to give rise to considerably higher separation forces as compared to open substrate.Comment: 34 pages, 12 figure

    Lattice Boltzmann Simulations of Droplet formation in confined Channels with Thermocapillary flows

    Full text link
    Based on mesoscale lattice Boltzmann simulations with the "Shan-Chen" model, we explore the influence of thermocapillarity on the break-up properties of fluid threads in a microfluidic T-junction, where a dispersed phase is injected perpendicularly into a main channel containing a continuous phase, and the latter induces periodic break-up of droplets due to the cross-flowing. Temperature effects are investigated by switching on/off both positive/negative temperature gradients along the main channel direction, thus promoting a different thread dynamics with anticipated/delayed break-up. Numerical simulations are performed at changing the flow-rates of both the continuous and dispersed phases, as well as the relative importance of viscous forces, surface tension forces and thermocapillary stresses. The range of parameters is broad enough to characterize the effects of thermocapillarity on different mechanisms of break-up in the confined T-junction, including the so-called "squeezing" and "dripping" regimes, previously identified in the literature. Some simple scaling arguments are proposed to rationalize the observed behaviour, and to provide quantitative guidelines on how to predict the droplet size after break-up.Comment: 18 pages, 9 figure

    Generalized Lattice Boltzmann Method with multi-range pseudo-potential

    Get PDF
    The physical behaviour of a class of mesoscopic models for multiphase flows is analyzed in details near interfaces. In particular, an extended pseudo-potential method is developed, which permits to tune the equation of state and surface tension independently of each other. The spurious velocity contributions of this extended model are shown to vanish in the limit of high grid refinement and/or high order isotropy. Higher order schemes to implement self-consistent forcings are rigorously computed for 2d and 3d models. The extended scenario developed in this work clarifies the theoretical foundations of the Shan-Chen methodology for the lattice Boltzmann method and enhances its applicability and flexibility to the simulation of multiphase flows to density ratios up to O(100)

    Ludwig: A parallel Lattice-Boltzmann code for complex fluids

    Full text link
    This paper describes `Ludwig', a versatile code for the simulation of Lattice-Boltzmann (LB) models in 3-D on cubic lattices. In fact `Ludwig' is not a single code, but a set of codes that share certain common routines, such as I/O and communications. If `Ludwig' is used as intended, a variety of complex fluid models with different equilibrium free energies are simple to code, so that the user may concentrate on the physics of the problem, rather than on parallel computing issues. Thus far, `Ludwig''s main application has been to symmetric binary fluid mixtures. We first explain the philosophy and structure of `Ludwig' which is argued to be a very effective way of developing large codes for academic consortia. Next we elaborate on some parallel implementation issues such as parallel I/O, and the use of MPI to achieve full portability and good efficiency on both MPP and SMP systems. Finally, we describe how to implement generic solid boundaries, and look in detail at the particular case of a symmetric binary fluid mixture near a solid wall. We present a novel scheme for the thermodynamically consistent simulation of wetting phenomena, in the presence of static and moving solid boundaries, and check its performance.Comment: Submitted to Computer Physics Communication

    Mesoscopic simulation study of wall roughness effects in micro-channel flows of dense emulsions

    Full text link
    We study the Poiseuille flow of a soft-glassy material above the jamming point, where the material flows like a complex fluid with Herschel- Bulkley rheology. Microscopic plastic rearrangements and the emergence of their spatial correlations induce cooperativity flow behavior whose effect is pronounced in presence of confinement. With the help of lattice Boltzmann numerical simulations of confined dense emulsions, we explore the role of geometrical roughness in providing activation of plastic events close to the boundaries. We probe also the spatial configuration of the fluidity field, a continuum quantity which can be related to the rate of plastic events, thereby allowing us to establish a link between the mesoscopic plastic dynamics of the jammed material and the macroscopic flow behaviour

    Computer simulations of domain growth and phase separation in two-dimensional binary immiscible fluids using dissipative particle dynamics

    Full text link
    We investigate the dynamical behavior of binary fluid systems in two dimensions using dissipative particle dynamics. We find that following a symmetric quench the domain size R(t) grows with time t according to two distinct algebraic laws R(t) = t^n: at early times n = 1/2, while for later times n = 2/3. Following an asymmetric quench we observe only n = 1/2, and if momentum conservation is violated we see n = 1/3 at early times. Bubble simulations confirm the existence of a finite surface tension and the validity of Laplace's law. Our results are compared with similar simulations which have been performed previously using molecular dynamics, lattice-gas and lattice-Boltzmann automata, and Langevin dynamics. We conclude that dissipative particle dynamics is a promising method for simulating fluid properties in such systems.Comment: RevTeX; 22 pages, 5 low-resolution figures. For full-resolution figures, connect to http://www.tcm.phy.cam.ac.uk/~ken21/tension/tension.htm

    Impact-Induced Hardening in Dense Frictional Suspensions

    Get PDF
    By employing the lattice Boltzmann method, we perform simulations of dense suspensions under impacts, which incorporate the contact between suspended particles as well as the free surface of the suspension. Our simulation for a free falling impactor on a dense suspension semi-quantitatively reproduces experimental results, where we observe rebounds of the impactor by the suspension containing frictional particles for high speed impact and high volume fraction shortly after the impact before subsequently sinking. We observe that the response depends on the radius of the impactor, which leads to fitting our simulation data to a phenomenological model based on the Hertzian contact theory. When the rebound takes place, percolated force chains are formed by the frictional contacts between suspended particles. Furthermore, persistent homology analysis is used to elucidate the significance of the topological structure of the force chains, where the total persistence of connected components correlates with the force supporting the impactor

    Contact angle determination in multicomponent lattice Boltzmann simulations

    Full text link
    Droplets on hydrophobic surfaces are ubiquitous in microfluidic applications and there exists a number of commonly used multicomponent and multiphase lattice Boltzmann schemes to study such systems. In this paper we focus on a popular implementation of a multicomponent model as introduced by Shan and Chen. Here, interactions between different components are implemented as repulsive forces whose strength is determined by model parameters. In this paper we present simulations of a droplet on a hydrophobic surface. We investigate the dependence of the contact angle on the simulation parameters and quantitatively compare different approaches to determine it. Results show that the method is capable of modelling the whole range of contact angles. We find that the a priori determination of the contact angle is depending on the simulation parameters with an uncertainty of 10 to 20%.Comment: 14 pages, 7 figure
    corecore