390 research outputs found

    Simulation of Diesel Particulate Filter regeneration using Lattice Boltzmann method

    Get PDF
    Lattice Boltzmann Method is a novel approach, which has shown promise in solving a wide variety of fluid flow problems including single and multi-phase flows in complex geometries. Volume elements of the fluid domain are considered to be composed of particles and these particles fall under a velocity distribution function at each grid point. Particles collide with each other under the influence of external forces and the rules of collision are defined so as to be compatible with the Navier-Stokes Equation. In the current work, LBM has been applied to Diesel Particulate filters which is a device used for reducing Particulate Matter emissions from diesel engines. Diesel Particulate Filtering (DPF) technologies as they are collectively known, have a two-step mechanism to them. First is the trapping of the particulate matter and second is the regeneration process, which is essentially the cleaning process applied to get rid of the trapped soot with or without the help of catalytic compounds. The deposited soot is oxidized during this regeneration process. This oxidation of soot has been modeled in the current work using LBM. An artificially created porous microstructure as used by authors in some earlier works has been used to simulate the flow of fluid, which is considered to have a specified mass fraction of soot for different runs of the simulation. The velocity and concentration fields have been modeled with a D2Q9 lattice arrangement and the temperature field with a D2Q4 arrangement. The numerical code is developed using C. Flow over a heated cylinder has been modeled as a benchmark case. The pressure, velocity, temperature and concentration contours for the disordered media are compared with published work

    Simulation of Dynamic Rearrangement Events in Wall-Flow Filters Applying Lattice Boltzmann Methods

    Get PDF
    Wall-flow filters are applied in the exhaust treatment of internal combustion engines for the removal of particulate matter (PM). Over time, the pressure drop inside those filters increases due to the continuously introduced solid material, which forms PM deposition layers on the filter substrate. This leads to the necessity of regenerating the filter. During such a regeneration process, fragments of the PM layers can potentially rearrange inside single filter channels. This may lead to the formation of specific deposition patterns, which affect a filter’s pressure drop, its loading capacity and the separation efficiency. The dynamic formation process can still not consistently be attributed to specific influence factors, and appropriate calculation models that enable a quantification of respective factors do not exist. In the present work, the dynamic rearrangement process during the regeneration of a wall-flow filter channel is investigated. As a direct sequel to the investigation of a static deposition layer in a previous work, the present one additionally investigates the dynamic behaviour following the detachment of individual layer fragments as well as the formation of channel plugs. The goal of this work is the extension of the resolved particle methodology used in the previous work via a discrete method to treat particle–particle and particle–wall interactions in order to evaluate the influence of the deposition layer topology, PM properties and operating conditions on dynamic rearrangement events. It can be shown that a simple mean density methodology represents a reproducible way of determining a channel plug’s extent and its average density, which agrees well with values reported in literature. The sensitivities of relevant influence factors are revealed and their impact on the rearrangement process is quantified. This work contributes to the formulation of predictions on the formation of specific deposition patterns, which impact engine performance, fuel consumption and service life of wall-flow filters

    LATTICE BOLTZMANN METHOD AND CELLULAR AUTOMATA SIMULATION OF PARTICLE MOTION AND DEPOSITION IN 2-D CASE

    Get PDF
    This technical report discusses the application of the Lattice Boltzmann Method (LBM) and Cellular Automata (CA) simulation in fluid flow and particle deposition. The current work focuses on incompressible flow simulation passing cylinders, in which we incorporate the LBM D2Q9 and CA techniques to simulate the fluid flow and particle loading respectively. For the LBM part, the theories of boundary conditions are studied and verified using the Poiseuille flow test. For the CA part, several models regarding simulation of particles are explained. And a new Digital Differential Analyzer (DDA) algorithm is introduced to simulate particle motion in the Boolean model. The numerical results are compared with a previous probability velocity model by Masselot [Masselot 2000], which shows a satisfactory result

    Study of the flow field through the wall of a Diesel particulate filter using Lattice Boltzmann Methods

    Full text link
    Contamination is becoming an important problem in great metropolitan areas. A large portion of the contaminants is emitted by the vehicle fleet. At European level, as well as in other economical areas, the regulation is becoming more and more restrictive. Euro regulations are the best example of this tendency. Specially important are the emissions of nitrogen oxide (NOx) and Particle Matter (PM). Two different strategies exist to reduce the emission of pollutants. One of them is trying to avoid their creation. Modifying the combustion process by means of different fuel injection laws or controlling the air regeneration are the typical methods. The second set of strategies is focused on the contaminant elimination. The NOx are reduced by means of catalysis and/or reducing atmosphere, usually created by injection of urea. The particle matter is eliminated using filters. This thesis is focused in this matter. Most of the strategies to reduce the emission of contaminants penalise fuel consumption. The particle filter is not an exception. Its installation, located in the exhaust duct, restricts the pass of the air. It increases the pressure along the whole exhaust line before the filter reducing the performance. Optimising the filter is then an important task. The efficiency of the filter has to be good enough to obey the contaminant normative. At the same time the pressure drop has to be as low as possible to optimise fuel consumption and performance. The objective of the thesis is to find the relation between the micro-structure and the macroscopic properties. With this knowledge the optimisation of the micro-structure is possible. The micro-structure of the filter mimics acicular mullite. It is created by procedural generation using random parameters. The relation between micro-structure and the macroscopic properties such as porosity and permeability are studied in detail. The flow field is solved using LabMoTer, a software developed during this thesis. The formulation is based on Lattice Botlzmann Methods, a new approach to simulate fluid dynamics. In addition, Walberla framework is used to solve the flow field too. This tool has been developed by Friedrich Alexander University of Erlangen Nürnberg. The second part of the thesis is focused on the particles immersed into the fluid. The properties of the particles are given as a function of the aerodynamic diameter. This is enough for macroscopic approximations. However, the discretization of the porous media has the same order of magnitude than the particle size. Consequently realistic geometry is necessary. Diesel particles are aggregates of spheres. A simulation tool is developed to create these aggregated using ballistic collision. The results are analysed in detail. The second step is to characterise their aerodynamic properties. Due to the small size of the particles, with the same order of magnitude than the separation between molecules of air, the fluid can not be approximated as a continuous medium. A new approach is needed. Direct Simulation Monte Carlo is the appropriate tool. A solver based on this formulation is developed. Unfortunately complex geometries could not be implemented on time. The thesis has been fruitful in several aspects. A new model based on procedural generation has been developed to create a micro-structure which mimics acicular mullite. A new CFD solver based on Lattice Boltzmann Methods, LabMoTer, has been implemented and validated. At the same time it is proposed a technique to optimized setup. Ballistic agglomeration process is studied in detail thanks to a new simulator developed ad hoc for this task. The results are studied in detail to find correlation between properties and the evolution in time. Uncertainty Quantification is used to include the Uncertainty in the models. A new Direct Simulation Monte Carlo solver has been developed and validated to calculate rarefied flow.La contaminación se está volviendo un gran problema para las grandes áreas metropolitanas, en gran parte debido al tráfico. A nivel europeo, al igual que en otras áreas, la regulación es cada vez más restrictiva. Una buena prueba de ello es la normativa Euro de la Unión Europea. Especialmente importantes son las emisiones de óxidos de nitrógeno (NOx) y partículas (PM). La reducción de contaminantes se puede abordar desde dos estrategias distintas. La primera es la prevención. Modificar el proceso de combustión a través de las leyes de inyección o controlar la renovación de la carda son los métodos más comunes. La segunda estrategia es la eliminación. Se puede reducir los NOx mediante catálisis o atmósfera reductora y las partículas mediante la instalación de un filtro en el conducto de escape. La presente tesis se centra en el estudio de éste último. La mayoría de as estrategias para la reducción de emisiones penalizan el consumo. El filtro de partículas no es una excepción. Restringe el paso de aire. Como consecuencia la presión se incrementa a lo largo de toda la línea reduciendo las prestaciones del motor. La optimización del filtro es de vital importancia. Tiene que mantener su eficacia a la par que que se minimiza la caída de presión y con ella el consumo de combustible. El objetivo de la tesis es encontrar la relación entre la miscroestructura y las propiedades macroscópicas del filtro. Las conclusiones del estudio podrán utilizarse para optimizar la microestructura. La microestructura elegida imita los filtros de mulita acicular. Se genera por ordenador mediante generación procedimental utilizando parámetros aleatorios. Gracias a ello se puede estudiar la relación que existe entre la microestructura y las propiedades macroscópicas como la porosidad y la permeabilidad. El campo fluido se resuelve con LabMoTer, un software desarrollado en esta tesis. Está basado en Lattice Boltzmann, una nueva aproximación para simular fluidos. Además también se ha utilizado el framework Walberla desarrollado por la universidad Friedrich Alexander de Erlangen Nürnberg. La segunda parte de la tesis se centra en las partículas suspendidas en el fluido. Sus propiedades vienen dadas en función del diámetro aerodinámico. Es una buena aproximación desde un punto de vista macroscópico. Sin embargo éste no es el caso. El tamaño de la discretización requerida para calcular el medio poroso es similar al tamaño de las partículas. En consecuencia se necesita simular geometrías realistas. Las partículas Diesel son agregados de esferas. El proceso de aglomeración se ha simulado mediante colisión balística. Los resultados se han analizado con detalle. El segundo paso es la caracterización aerodinámica de los aglomerados. Debido a que el tamaño de las partículas precursoras es similar a la distancia entre moléculas el fluido no puede ser considerado un medio continuo. Se necesita una nueva aproximación. La herramienta apropiada es la Simulación Directa Monte Carlo (DSMC). Por ello se ha desarrollado un software basado en esta formulación. Desafortunadamente no ha habido tiempo suficiente como para implementar condiciones de contorno sobre geometrías complejas. La tesis ha sido fructífera en múltiples aspectos. Se ha desarrollado un modelo basado en generación procedimental capaz de crear una microestructura que aproxime mulita acicular. Se ha implementado y validado un nuevo solver CFD, LabMoTer. Además se ha planteado una técnica que optimiza la preparación del cálculo. El proceso de aglomeración se ha estudiado en detalle gracias a un nuevo simulador desarrollado ad hoc para esta tarea. Mediante el análisis estadístico de los resultados se han planteado modelos que reproducen la población de partículas y su evolución con el tiempo. Técnicas de Cuantificación de Incertidumbre se han empleado para modelar la dispersión de datos. Por último, un simulador basadoLa contaminació s'està tornant un gran problema per a les grans àrees metropolitanes, en gran part degut al tràfic. A nivell europeu, a l'igual que en atres àrees, la regulació és cada volta més restrictiva. Una bona prova d'això és la normativa Euro de l'Unió Europea. Especialment importants són les emissions d'òxits de nitrogen (NOX) i partícules (PM). La reducció de contaminants se pot abordar des de dos estratègies distintes. La primera és la prevenció. Modificar el procés de combustió a través de les lleis d'inyecció o controlar la renovació de la càrrega són els mètodos més comuns. La segona estratègia és l'eliminació. Se pot reduir els NOX mediant catàlisis o atmòsfera reductora i les partícules mediant l'instalació d'un filtre en el vas d'escap. La present tesis se centra en l'estudi d'este últim. La majoria de les estratègies per a la reducció d'emissions penalisen el consum. El filtre de partícules no és una excepció. Restringix el pas d'aire. Com a conseqüència la pressió s'incrementa a lo llarc de tota la llínea reduint les prestacions del motor. L'optimisació del filtre és de vital importància. Ha de mantindre la seua eficàcia a la par que que es minimisa la caiguda de pressió i en ella el consum de combustible. L'objectiu de la tesis és trobar la relació entre la microescritura i les propietats macroscòpiques del filtre. Les conclusions de l'estudi podran utilisar-se per a optimisar la microestructura. La microestructura elegida imita els filtres de mulita acicular. Se genera per ordenador mediant generació procedimental utilisant paràmetros aleatoris. Gràcies ad això es pot estudiar la relació que existix entre la microestructura i les propietats macroscòpiques com la porositat i la permeabilitat. El camp fluït se resol en LabMoTer, un software desenrollat en esta tesis. Està basat en Lattice Boltzmann, una nova aproximació per a simular fluïts. Ademés també s'ha utilisat el framework Walberla, desentollat per l'Universitat Friedrich Alexander d'Erlangen Nürnberg. La segona part de la tesis se centra en les partícules suspeses en el fluït. Les seues propietats venen donades en funció del diàmetro aerodinàmic. És una bona aproximació des d'un punt de vista macroscòpic. No obstant este no és el cas. El tamany de la discretisació requerida per a calcular el mig porós és similar al tamany de les partícules. En conseqüència es necessita simular geometries realistes. Les partícules diésel són agregats d'esferes. El procés d'aglomeració s'ha simulat mediant colisió balística. Els resultats s'han analisat en detall. El segon pas és la caracterisació aerodinàmica dels aglomerats. Degut a que el tamany de les partícules precursores és similar a la distància entre molècules el fluït no pot ser considerat un mig continu. Se necessita una nova aproximació. La ferramenta apropiada és la Simulació Directa Monte Carlo (DSMC). Per això s'ha desenrollat un software basat en esta formulació. Malafortunadament no ha hagut temps suficient com per a implementar condicions de contorn sobre geometries complexes. La tesis ha segut fructífera en múltiples aspectes. S'ha desenrollat un model basat en generació procedimental capaç de crear una microestructura que aproxime mulita acicular. S'ha implementat i validat un nou solver CFD, LabMoTer. Ademés s'ha plantejat una tècnica que optimisa la preparació del càlcul. El procés d'aglomeració s'ha estudiat en detall gràcies a un nou simulador desenrollat ad hoc per ad esta tasca. Mediant l'anàlisis estadístic dels resultats s'han plantejat models que reproduixen la població de partícules i la seua evolució en el temps. Tècniques de Quantificació d'Incertea s'han empleat per a modelar la dispersió de senyes. Per últim, un simulador basat en DSMC s'ha desenrollat per a calcular fluïts rarificats.García Galache, JP. (2017). Study of the flow field through the wall of a Diesel particulate filter using Lattice Boltzmann Methods [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90413TESI

    Packed bed of spherical particles approach for pressure drop prediction in wall-flow DPFs (diesel particulate filters) under soot loading conditions

    Full text link
    The soot loading process in wall-flow DPFs (diesel particulate filters) affects the substrate structure depending on the filtration regime and produces the increase of pressure drop. Deep bed filtration regime produces the decrease of the porous wall permeability because of the soot particulates deposition inside it. Additionally, a layer of soot particulates grows on the porous wall surface when it becomes saturated. As soot loading increases, the pressure drop across the DPF depends on the porous wall and particulate layer permeabilities, which are in turn function of the substrate and soot properties. The need to consider the DPF pressure drop influence on engine performance analysis or DPF regeneration processes requires the use of low-computational effort models describing the structure of the soot deposition and its effect on permeability. This paper presents a model to describe the micro-scale of the porous wall and the particulate layer structure assuming them as packed beds of spherical particles. To assess the model s capability, it is applied to predict the DPF pressure drop under different experimental conditions in soot loading, mass flow and gas temperature.This work has been partially supported by the Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia through grant number SP20120340-UPPTE/2012/96 and by the Conselleria de Educacio, Cultura i Esport de la Generalitat Valenciana through grant number GV/2013/043.Serrano Cruz, JR.; Arnau Martínez, FJ.; Piqueras Cabrera, P.; García Afonso, Ó. (2013). Packed bed of spherical particles approach for pressure drop prediction in wall-flow DPFs (diesel particulate filters) under soot loading conditions. Energy. 58:644-654. https://doi.org/10.1016/j.energy.2013.05.051S6446545

    Investigation of the Rearrangement of Reactive–Inert Particulate Structures in a Single Channel of a Wall-Flow Filter

    Get PDF
    Wall-flow filters are a standard component in exhaust gas aftertreatment and have become indispensable in vehicles. Ash and soot particles generated during engine combustion are deposited in diesel or gasoline particulate filters. During regeneration, the soot particles are oxidized. The remaining ash particles can form different deposition patterns: a homogenous layer or plug-end filling. It has not yet been clarified whether the plug-end filling is first formed by rearrangements of agglomerates before and during the regeneration of the reactive particles. In this study, experiments are carried out with a single channel of a wall-flow filter. For the investigations, a layer of inert and reactive particles is formed. The rearrangement of agglomerates is achieved by flowing through the model filter channel and observed with a high-speed camera. The particulate structures detach at the channel inlet, are transported along the channel and deposited at the plug. The velocity of the detached agglomerates depends on their size, shape, track and the gas velocity in the channel. If the agglomerate is near the walls of the model filter channel, the gas velocity deviates from the gas velocity in the core flow. The higher the gas velocity, the higher the agglomerate velocity achieved and the larger the detached agglomerates

    Modélisation de l'efficacité de capture de filtres particulaires pour moteur diesel

    Get PDF
    Pour réduire les émissions de suie d’un moteur diesel, des filtres particulaires diesel (FPDs) sont ajoutés au système de traitement des gaz d’échappement. Étant donné que les normes régissant ces émission sont de plus en plus strictes, il est nécessaire de comprendre de mieux en mieux les phénomènes ayant lieux dans un FPD pour en concevoir des plus performants. Un de ces phénomènes n’ayant reçu que peu d’attention est la thermophorèse. L’objectif de ce travail est d’améliorer la compréhension de l’effet de la thermophorèse sur la capture des particules de suie dans un FPD. Pour évaluer l’importance de ce phénomène et ses effets sur la capture de la suie, un modèle numérique a été développé. Il se compose de trois étapes : (1) la reconstruction numérique d’un fragment de mur poreux de cordiérite à l’aide du recuit simulé, (2) le calcul du champ de vitesse au travers du mur poreux par la méthode de Boltzmann sur réseau, et (3) la résolution des trajectoires des particules de suies calculées par une équation modifiée de Langevin prenant en compte la thermophorèse. Les effets de l’intensité et de l’orientation de la force thermophorétique sur des particules aérosols de diverses tailles et pour trois vitesses d’écoulement du gaz. Il a été démontré que la thermophorèse peut affecter jusqu’à 27% du volume total des particules de suies entrant dans le FPD. De plus, la force thermophorétique a eu pour impact d’affecter l’efficacité de capture de ±2% et la profondeur moyenne de capture de ±10μm en fonction de son orientation par rapport à celle de l’écoulement. Un critère sur l’importance de la force thermophorétique dans le modèle basé sur le nombre de Stokes et de Reynolds a été trouvé. Il s’agit du premier travail portant sur l’effet de la thermophorèse dans un FPD. ---------- To reduce soot particle emissions from diesel engines, harmful for the environment and the human health, Diesel Particulate Filters (DPFs) are used in the exhaust gas system. Since the regulations are increasingly stringent, a better understanding of capture in DPFs is necessary to improve them. The purpose of the present study was to investigate the impact of thermophoresis on soot capture in the cordierite porous wall of a diesel particulate filter (DPF). A three-step numerical model was developed, that consists of: (1) the numerical reconstruction of a representative volume of the cordierite porous wall, (2) the computation of gas flow through the porous wall using the lattice Boltzmann method, and (3) the prediction of DPF capture efficiency based on the resolution of a modified Langevin equation that takes thermophoresis into account. The impact of the magnitude and orientation of the thermophoretic force on the capture of soot particles of various sizes under different flow conditions was investigated. The thermophoretic force applied in or against the flow direction affected the particle capture significantly, depending on particle size and flow velocity. It is shown that thermophoresis has a statistically significant impact on up to 27% of the soot volume entering a DPF. The effects are observed on both the capture efficiency (±2%) and average capture depth (±10μm). A criteria for the thermophoresis significance based on the Stokes and Reynolds numbers has been found. It is the first work on the effects of thermophoresis in a DPF

    Filtration modelling in wall-flow particulate filters of low soot penetration thickness

    Full text link
    A filtration model for wall-flow particulate filters based on the theory of packed beds of spherical particles is presented to diagnose the combined response of filtration efficiency and pressure drop from a reliable computation of the flow field and the porous media properties. The model takes as main assumption the experimentally well-known low soot penetration thickness inside the porous wall. The analysis of soot loading processes in different particulate filters shows the ability of the proposed approach to predict the filtration efficiency as a function of the particle size distribution. Nevertheless, pressure drop and overall filtration efficiency are determined by the mode diameter of the raw particulate matter emission. The results reveal the dependence of the filtration efficiency in clean conditions on the sticking coefficient. However, the dynamics of the pressure drop and filtration efficiency as the soot loading varies is governed by the soot penetration thickness. This parameter is closely related to the porous wall Peclet number, which accounts for the porous wall and flow properties influence on the deposition process. The effect of the transition from deep bed to cake filtration regime on the pressure drop is also discussed underlying the importance of the macroscale over microscale phenomena.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness through Grant No. TRA2013-40853-R. Additionally, the Ph.D. student E. Angiolini has been funded by a grant from Conselleria de Educacio, Cultura i Esport of the Generalitat Valenciana with reference GRISOLIA/2013/036. These supports are gratefully acknowledged by the authors.Serrano Cruz, JR.; Climent, H.; Piqueras, P.; Angiolini, E. (2016). Filtration modelling in wall-flow particulate filters of low soot penetration thickness. Energy. 112:883-898. https://doi.org/10.1016/j.energy.2016.06.121S88389811

    Étude numérique de l’impact de la distribution de catalyseur sur les performances des filtres à particules catalytiques

    Get PDF
    RÉSUMÉ: Les moteurs essence à injection directe (EID) sont une technologie en vogue pour limiter les émissions de gaz à effet de serre, grâce à d’importantes économies de carburant comparé aux autres technologies d’essence. Cependant, d’autres polluants sont émis par les véhicules à combustion interne, comme les particules fines et les oxydes d’azote (NOX) par exemple. Pour les traiter, des filtres à particules (FAP) et des chambres catalytiques (CC) sont appliqués aux systèmes de traitement des gaz d’échappement par les manufacturiers. Ces deux dispositifs sont constitués de monolithes fait de canaux rectangulaires. Dans le cas du FAP, les murs des canaux sont composés d’une céramique poreuse qui filtre les aérosols. Dans le cas des CC, les canaux sont imperméables à l’écoulement des gaz d’échappement et recouverts de catalyseur dans lequel les espèces chimiques à traiter diffusent. Afin d’abaisser les coûts et le volume de ces deux systèmes, il est possible d’intégrer le catalyseur directement dans la céramique qui forme les canaux du FAP. On parle alors de filtre à particule catalytique (FAPC). Cependant, cette déposition altère de façon significative les caractéristiques géométriques du FAPC à l’échelle du mur poreux. De plus en plus d’études s’intéressent ainsi à évaluer l’impact du dépôt de catalyseur sur les performances du FAPC en fonction, par exemple, de la quantité introduite, de la différence entre une déposition dans le mur ou sur le mur, ou encore d’un recouvrement par zones le long de chaque canal.----------ABSTRACT: Particulate filters (PF) have been used very successfully during the past decade to reduce particulate matter from the exhaust gas of modern vehicles. They consist in honeycomb monoliths made out of rectangular channels in most cases. These channels are alternatively plugged at the inlet or the outlet in order to force the exhaust gases to go through the porous material composing its walls. Catalytic chambers (CC) are open monoliths coated with precious metal composed catalysts. By diffusing in the catalyst, noxious gases as carbon monoxide (CO), nitrogen oxides (NOX) and hydrocarbons (HC) are reduced or oxidized in armless components like CO2, H2O and N2
    • …
    corecore