105,530 research outputs found

    A Unified Conformal Field Theory Description of Paired Quantum Hall States

    Full text link
    The wave functions of the Haldane-Rezayi paired Hall state have been previously described by a non-unitary conformal field theory with central charge c=-2. Moreover, a relation with the c=1 unitary Weyl fermion has been suggested. We construct the complete unitary theory and show that it consistently describes the edge excitations of the Haldane-Rezayi state. Actually, we show that the unitary (c=1) and non-unitary (c=-2) theories are related by a local map between the two sets of fields and by a suitable change of conjugation. The unitary theory of the Haldane-Rezayi state is found to be the same as that of the 331 paired Hall state. Furthermore, the analysis of modular invariant partition functions shows that no alternative unitary descriptions are possible for the Haldane-Rezayi state within the class of rational conformal field theories with abelian current algebra. Finally, the known c=3/2 conformal theory of the Pfaffian state is also obtained from the 331 theory by a reduction of degrees of freedom which can be physically realized in the double-layer Hall systems.Comment: Latex, 42 pages, 2 figures, 3 tables; minor corrections to text and reference

    Certified lattice reduction

    Get PDF
    Quadratic form reduction and lattice reduction are fundamental tools in computational number theory and in computer science, especially in cryptography. The celebrated Lenstra-Lenstra-Lov\'asz reduction algorithm (so-called LLL) has been improved in many ways through the past decades and remains one of the central methods used for reducing integral lattice basis. In particular, its floating-point variants-where the rational arithmetic required by Gram-Schmidt orthogonalization is replaced by floating-point arithmetic-are now the fastest known. However, the systematic study of the reduction theory of real quadratic forms or, more generally, of real lattices is not widely represented in the literature. When the problem arises, the lattice is usually replaced by an integral approximation of (a multiple of) the original lattice, which is then reduced. While practically useful and proven in some special cases, this method doesn't offer any guarantee of success in general. In this work, we present an adaptive-precision version of a generalized LLL algorithm that covers this case in all generality. In particular, we replace floating-point arithmetic by Interval Arithmetic to certify the behavior of the algorithm. We conclude by giving a typical application of the result in algebraic number theory for the reduction of ideal lattices in number fields.Comment: 23 page

    Colour-Dielectric Gauge Theory on a Transverse Lattice

    Get PDF
    We investigate in some detail consequences of the effective colour-dielectric formulation of lattice gauge theory using the light-cone Hamiltonian formalism with a transverse lattice. As a quantitative test of this approach, we have performed extensive analytic and numerical calculations for 2+1-dimensional pure gauge theory in the large N limit. Because of Eguchi-Kawai reduction, one effectively studies a 1+1-dimensional gauge theory coupled to matter in the adjoint representation. We study the structure of coupling constant space for our effective potential by comparing with the physical results available from conventional Euclidean lattice Monte Carlo simulations of this system. In particular, we calculate and measure the scaling behaviour of the entire low-lying glueball spectrum, glueball wavefunctions, string tension, asymptotic density of states, and deconfining temperature. We employ a new hybrid DLCQ/wavefunction basis in our calculations of the light-cone Hamiltonian matrix elements, along with extrapolation in Tamm-Dancoff truncation, significantly reducing numerical errors. Finally we discuss, in light of our results, what further measurements and calculations could be made in order to systematically remove lattice spacing dependence from our effective potential a priori.Comment: 48 pages, Latex, uses macro boxedeps.tex, minor errors corrected in revised versio

    Attacks on the Search-RLWE problem with small errors

    Get PDF
    The Ring Learning-With-Errors (RLWE) problem shows great promise for post-quantum cryptography and homomorphic encryption. We describe a new attack on the non-dual search RLWE problem with small error widths, using ring homomorphisms to finite fields and the chi-squared statistical test. In particular, we identify a "subfield vulnerability" (Section 5.2) and give a new attack which finds this vulnerability by mapping to a finite field extension and detecting non-uniformity with respect to the number of elements in the subfield. We use this attack to give examples of vulnerable RLWE instances in Galois number fields. We also extend the well-known search-to-decision reduction result to Galois fields with any unramified prime modulus q, regardless of the residue degree f of q, and we use this in our attacks. The time complexity of our attack is O(nq2f), where n is the degree of K and f is the residue degree of q in K. We also show an attack on the non-dual (resp. dual) RLWE problem with narrow error distributions in prime cyclotomic rings when the modulus is a ramified prime (resp. any integer). We demonstrate the attacks in practice by finding many vulnerable instances and successfully attacking them. We include the code for all attacks
    • 

    corecore