150,698 research outputs found

    Correlation Functions of Hadron Currents in the QCD Vacuum Calculated in Lattice QCD

    Full text link
    Point-to-point vacuum correlation functions for spatially separated hadron currents are calculated in quenched lattice QCD on a 163Ă—2416^3\times 24 lattice with 6/g2=5.76/g^2=5.7. The lattice data are analyzed in terms of dispersion relations, which enable us to extract physical information from small distances where asymptotic freedom is apparent to large distances where the hadronic resonances dominate. In the pseudoscalar, vector, and axial vector channels where experimental data or phenomenological information are available, semi-quantitative agreement is obtained. In the nucleon and delta channels, where no experimental data exist, our lattice data complement experiments. Comparison with approximations based on sum rules and interacting instantons are made, and technical details of the lattice calculation are described.Comment: 31 pages in REVTeX (with 10 figures to be added using figures command), MIT CTP #214

    The static potential: lattice versus perturbation theory in a renormalon-based approach

    Get PDF
    We compare, for the static potential and at short distances, perturbation theory with the results of lattice simulations. We show that a renormalon-dominance picture explains why in the literature sometimes agreement, and another disagreement, is found between lattice simulations and perturbation theory depending on the different implementations of the latter. We also show that, within a renormalon-based scheme, perturbation theory agrees with lattice simulations.Comment: 18 pages, 11 figures, lattice data of Necco and Sommer introduced, references added, some lengthier explanations given, physical results unchange

    The Geometry of Niggli Reduction II: BGAOL -- Embedding Niggli Reduction

    Full text link
    Niggli reduction can be viewed as a series of operations in a six-dimensional space derived from the metric tensor. An implicit embedding of the space of Niggli-reduced cells in a higher dimensional space to facilitate calculation of distances between cells is described. This distance metric is used to create a program, BGAOL, for Bravais lattice determination. Results from BGAOL are compared to the results from other metric-based Bravais lattice determination algorithms

    An new order parameter with renormalized Polyakov loops

    Full text link
    It is well established that physical quantities like the heavy quark potentials get temperature independent at sufficiently short distances. As a first application of this feature we suggest a new order parameter for the confinement/deconfinement phase transition. Our investigations are based on recent lattice studies.Comment: 2 pages, 2 figures, contribution to 'Statistical QCD', Bielefeld, August 26-30, 200

    Matrix Theory for Baryons: An Overview of Holographic QCD for Nuclear Physics

    Full text link
    We provide, for non-experts, a brief overview of holographic QCD and a review of a recent proposal of matrix-description of multi-baryon systems in holographic QCD. Based on the matrix model, we derive the baryon interaction at short distances in multi-flavor holographic QCD. We show that there is a very universal repulsive core of inter-baryon forces for generic number of flavors. This is consistent with a recent lattice QCD analysis for N_f = 2, 3 where repulsive core looks universal. We also provide a comparison of our results with the lattice QCD and the operator product expansion (OPE) analysis.Comment: 31 pages, 13 figure

    The Negativity of the Overlap-Based Topological Charge Density Correlator in Pure-Glue QCD and the Non-Integrable Nature of its Contact Part

    Full text link
    We calculate the lattice two-point function of topological charge density in pure-glue QCD using the discretization of the operator based on the overlap Dirac matrix. Utilizing data at three lattice spacings it is shown that the continuum limit of the correlator complies with the requirement of non-positivity at non-zero distances. For our choice of the overlap operator and the Iwasaki gauge action we find that the size of the positive core is ~2a (with a being the lattice spacing) sufficiently close to the continuum limit. This result confirms that the overlap-based topological charge density is a valid local operator over realistic backgrounds contributing to the QCD path integral, and is important for the consistency of recent results indicating the existence of a low-dimensional global brane-like topological structure in the QCD vacuum. We also confirm the divergent short-distance behavior of the correlator, and the non-integrable nature of the associated contact part.Comment: 13 pages, 5 figure

    Dynamical Abelian Projection of Gluodynamics

    Get PDF
    Assuming the monopole dominance, that has been proved in the lattice gluodynamics, to hold in the continuum limit, we develop an effective scalar field theory for QCD at large distances to describe confinement. The approach is based on a gauge (or projection) independent formulation of the monopole dominance and manifestly Lorentz invariant.Comment: A talk given at QCD96, Montpellier, France, July, 1996 (to appear in the Proceedings); plain Latex, 6 page
    • …
    corecore