1,928 research outputs found

    Alternating Sign Matrices and Hypermatrices, and a Generalization of Latin Square

    Full text link
    An alternating sign matrix, or ASM, is a (0,±1)(0, \pm 1)-matrix where the nonzero entries in each row and column alternate in sign. We generalize this notion to hypermatrices: an n×n×nn\times n\times n hypermatrix A=[aijk]A=[a_{ijk}] is an {\em alternating sign hypermatrix}, or ASHM, if each of its planes, obtained by fixing one of the three indices, is an ASM. Several results concerning ASHMs are shown, such as finding the maximum number of nonzeros of an n×n×nn\times n\times n ASHM, and properties related to Latin squares. Moreover, we investigate completion problems, in which one asks if a subhypermatrix can be completed (extended) into an ASHM. We show several theorems of this type.Comment: 39 page

    On the number of transversals in latin squares

    Full text link
    The logarithm of the maximum number of transversals over all latin squares of order nn is greater than n6(lnn+O(1))\frac{n}{6}(\ln n+ O(1))

    Enumerating extensions of mutually orthogonal Latin squares

    Get PDF
    Two n×n Latin squares L1,L2 are said to be orthogonal if, for every ordered pair (x, y) of symbols, there are coordinates (i, j) such that L1(i,j)=x and L2(i,j)=y. A k-MOLS is a sequence of k pairwise-orthogonal Latin squares, and the existence and enumeration of these objects has attracted a great deal of attention. Recent work of Keevash and Luria provides, for all fixed k, log-asymptotically tight bounds on the number of k-MOLS. To study the situation when k grows with n, we bound the number of ways a k-MOLS can be extended to a (k+1)-MOLS. These bounds are again tight for constant k, and allow us to deduce upper bounds on the total number of k-MOLS for all k. These bounds are close to tight even for k linear in n, and readily generalise to the broader class of gerechte designs, which include Sudoku squares
    corecore