1,541 research outputs found

    Lateralized Functions in the Dog Brain

    Get PDF
    Understanding the complementary specialisation of the canine brain has been the subject of increasing scientific study over the last 10 years, chiefly due to the impact of cerebral lateralization on dog behaviour. In particular, behavioural asymmetries, which directly reflect different activation of the two sides of the dog brain, have been reported at different functional levels, including motor and sensory. The goal of this review is not only to provide a clear scenario of the experiments carried out over the last decade but also to highlight the relationships between dogs’ lateralization, cognitive style and behavioural reactivity, which represent crucial aspect relevant for canine welfare

    Why overlearned sequences are special: distinct neural networks in the right hemisphere for ordinal sequences

    Get PDF
    Written and spoken words activate left hemisphere areas involved in language processing. However, we here show that overlearned sequences (e.g. letters, numbers, weekdays, months) involve an unexpected right hemispheric activation in both the middle temporal gyrus and temporoparietal junction. Our findings offer a framework for understanding neuropsychological patterns seen in conditions such as synesthesia, in which anomalous perceptual experiences are triggered by overlearned sequences, and also in semantic dementia, in which left hemisphere damage disrupts word knowledge even while sequences can be spared

    Relationship between visuospatial attention and paw preference in dogs

    Get PDF
    The relationship between visuospatial attention and paw preference was investigated in domestic dogs. Visuospatial attention was evaluated using a food detection task that closely matches the so-called "cancellation" task used in human studies. Paw preference was estimated by quantifying the dog's use of forepaws to hold a puzzle feeder device (namely the "Kong") while eating its content. Results clearly revealed a strong relationship between visuospatial attention bias and motor laterality, with a left-visuospatial bias in the left-pawed group, a right-visuospatial bias in the right-pawed group and with the absence of significant visuospatial attention bias in ambi-pawed subjects. The current findings are the first evidence for the presence of a relationship between motor lateralization and visuospatial attentional mechanisms in a mammal species besides humans

    Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression

    Get PDF
    Although depressed mood is a normal occurrence in response to adversity in all individuals, what distinguishes those who are vulnerable to major depressive disorder (MDD) is their inability to effectively regulate negative mood when it arises. Investigating the neural underpinnings of adaptive emotion regulation and the extent to which such processes are compromised in MDD may be helpful in understanding the pathophysiology of depression. We report results from a functional magnetic resonance imaging study demonstrating left-lateralized activation in the prefrontal cortex (PFC) when downregulating negative affect in nondepressed individuals, whereas depressed individuals showed bilateral PFC activation. Furthermore, during an effortful affective reappraisal task, nondepressed individuals showed an inverse relationship between activation in left ventrolateral PFC and the amygdala that is mediated by the ventromedial PFC (VMPFC). No such relationship was found for depressed individuals, who instead show a positive association between VMPFC and amygdala. Pupil dilation data suggest that those depressed patients who expend more effort to reappraise negative stimuli are characterized by accentuated activation in the amygdala, insula, and thalamus, whereas nondepressed individuals exhibit the opposite pattern. These findings indicate that a key feature underlying the pathophysiology of major depression is the counterproductive engagement of right prefrontal cortex and the lack of engagement of left lateral-ventromedial prefrontal circuitry important for the downregulation of amygdala responses to negative stimuli

    Dynamic changes in ear temperature in relation to separation distress in dogs

    Get PDF
    Highlights • Pet dogs were tested in a brief separation test and filmed remotely using thermography. • Temperature was analyzed from selected patches of both ear pinnae simultaneously. • Social isolation was associated with a significant decrease in ear pinnae temperature. • Temperature of the two ears did not differ significantly from each other. • Long distance thermography is a useful tool in non-invasive stress monitoring. Abstract Infrared thermography can visualize changes in body surface temperature that result from stress-induced physiological changes and alterations of blood flow patterns. Here we explored its use for remote stress monitoring (i.e. removing need for human presence) in a sample of six pet dogs. Dogs were tested in a brief separation test involving contact with their owner, a stranger, and social isolation for two one-minute-periods. Tests were filmed using a thermographic camera set up in a corner of the room, around 7 m from where the subjects spent most of the time. Temperature was measured from selected regions of both ear pinnae simultaneously. Temperatures of both ear pinnae showed a pattern of decrease during separation and increase when a person (either the owner or a stranger) was present, with no lateralized temperature differences between the two ears. Long distance thermographic measurement is a promising technique for non-invasive remote stress assessment, although there are some limitations related to dogs' hair structure over the ears, making it unsuitable for some subjects

    REM versus Non-REM sleep disturbance specifically affects inter-specific emotion processing in family dogs (Canis familiaris)

    Get PDF
    Abstract Dogs have outstanding capabilities to read human emotional expressions, both vocal and facial. It has also been shown that positively versus negatively valenced dog-human social interactions substantially affect dogs’ subsequent sleep. In the present study, we manipulated dogs’ (N = 15, in a within subject design) sleep structure by specifically disrupting REM versus Non-REM sleep, while maintaining equal sleep efficiency (monitored via non-invasive polysomnography). We found that both the number of awakenings as well as relative Non-REM (but not relative REM) duration influenced dogs’ viewing patterns in a task where sad and happy human faces were simultaneously projected with sad or happy human voice playbacks. In accordance with the emotion laterality hypothesis, the interaction between sound valence and Non-REM sleep duration was specific to images projected to the left (regardless of image-sound congruency). These results reveal the first evidence of a causal link between sleep structure and inter-specific emotion-processing in the family dog

    Divergent Human Cortical Regions for Processing Distinct Acoustic-Semantic Categories of Natural Sounds: Animal Action Sounds vs. Vocalizations

    Get PDF
    A major gap in our understanding of natural sound processing is knowledge of where or how in a cortical hierarchy differential processing leads to categorical perception at a semantic level. Here, using functional magnetic resonance imaging (fMRI) we sought to determine if and where cortical pathways in humans might diverge for processing action sounds vs. vocalizations as distinct acoustic-semantic categories of real-world sound when matched for duration and intensity. This was tested by using relatively less semantically complex natural sounds produced by non-conspecific animals rather than humans. Our results revealed a striking double-dissociation of activated networks bilaterally. This included a previously well described pathway preferential for processing vocalization signals directed laterally from functionally defined primary auditory cortices to the anterior superior temporal gyri, and a less well-described pathway preferential for processing animal action sounds directed medially to the posterior insulae. We additionally found that some of these regions and associated cortical networks showed parametric sensitivity to high-order quantifiable acoustic signal attributes and/or to perceptual features of the natural stimuli, such as the degree of perceived recognition or intentional understanding. Overall, these results supported a neurobiological theoretical framework for how the mammalian brain may be fundamentally organized to process acoustically and acoustic-semantically distinct categories of ethologically valid, real-world sounds

    The Neurocognition of Prosody

    Get PDF
    Prosody is one of the most undervalued components of language, despite its fulfillment of manifold purposes. It can, for instance, help assign the correct meaning to compounds such as “white house” (linguistic function), or help a listener understand how a speaker feels (emotional function). However, brain-based models that take into account the role prosody plays in dynamic speech comprehension are still rare. This is probably due to the fact that it has proven difficult to fully denote the neurocognitive architecture underlying prosody. This review discusses clinical and neuroscientific evidence regarding both linguistic and emotional prosody. It will become obvious that prosody processing is a multistage operation and that its temporally and functionally distinct processing steps are anchored in a functionally differentiated brain network

    Semantic memory

    Get PDF
    The Encyclopedia of Human Behavior, Second Edition is a comprehensive three-volume reference source on human action and reaction, and the thoughts, feelings, and physiological functions behind those actions
    • …
    corecore