9,975 research outputs found

    A Distributed Model Predictive Control Framework for Road-Following Formation Control of Car-like Vehicles (Extended Version)

    Full text link
    This work presents a novel framework for the formation control of multiple autonomous ground vehicles in an on-road environment. Unique challenges of this problem lie in 1) the design of collision avoidance strategies with obstacles and with other vehicles in a highly structured environment, 2) dynamic reconfiguration of the formation to handle different task specifications. In this paper, we design a local MPC-based tracking controller for each individual vehicle to follow a reference trajectory while satisfying various constraints (kinematics and dynamics, collision avoidance, \textit{etc.}). The reference trajectory of a vehicle is computed from its leader's trajectory, based on a pre-defined formation tree. We use logic rules to organize the collision avoidance behaviors of member vehicles. Moreover, we propose a methodology to safely reconfigure the formation on-the-fly. The proposed framework has been validated using high-fidelity simulations.Comment: Extended version of the conference paper submission on ICARCV'1

    Interval Prediction for Continuous-Time Systems with Parametric Uncertainties

    Get PDF
    The problem of behaviour prediction for linear parameter-varying systems is considered in the interval framework. It is assumed that the system is subject to uncertain inputs and the vector of scheduling parameters is unmeasurable, but all uncertainties take values in a given admissible set. Then an interval predictor is designed and its stability is guaranteed applying Lyapunov function with a novel structure. The conditions of stability are formulated in the form of linear matrix inequalities. Efficiency of the theoretical results is demonstrated in the application to safe motion planning for autonomous vehicles.Comment: 6 pages, CDC 2019. Website: https://eleurent.github.io/interval-prediction

    Simulation Research on Driving Behaviour of Autonomous Vehicles on Expressway Ramp Under the Background of Vehicle-Road Coordination

    Get PDF
    Constructing a risk model with the subject of autonomous vehicles to screen out the vehicles of potential conflicts and analyze their choices under different strategies. Based on the co-simulation of Python and SUMO, establishing a model of on-ramp merge driving behaviour of autonomous vehicles based on non-cooperative static game. Under this model, the experiment results that the average speed in the merging area is increased by 12.7%, the standard deviation of the average speed is reduced by 35.46%, and the number of the vehicles successfully merged before the end of the merging area is 4.86 times that of traditional method, indicate that the model can effectively help the vehicles be merged and improve the traffic efficiency to a certain extent

    A Review of Shared Control for Automated Vehicles: Theory and Applications

    Get PDF
    The last decade has shown an increasing interest on advanced driver assistance systems (ADAS) based on shared control, where automation is continuously supporting the driver at the control level with an adaptive authority. A first look at the literature offers two main research directions: 1) an ongoing effort to advance the theoretical comprehension of shared control, and 2) a diversity of automotive system applications with an increasing number of works in recent years. Yet, a global synthesis on these efforts is not available. To this end, this article covers the complete field of shared control in automated vehicles with an emphasis on these aspects: 1) concept, 2) categories, 3) algorithms, and 4) status of technology. Articles from the literature are classified in theory- and application-oriented contributions. From these, a clear distinction is found between coupled and uncoupled shared control. Also, model-based and model-free algorithms from these two categories are evaluated separately with a focus on systems using the steering wheel as the control interface. Model-based controllers tested by at least one real driver are tabulated to evaluate the performance of such systems. Results show that the inclusion of a driver model helps to reduce the conflicts at the steering. Also, variables such as driver state, driver effort, and safety indicators have a high impact on the calculation of the authority. Concerning the evaluation, driver-in-the-loop simulators are the most common platforms, with few works performed in real vehicles. Implementation in experimental vehicles is expected in the upcoming years.This work was supported in part by the ECSEL Joint Undertaking, which funded the PRYSTINE project under Grant 783190, and in part by the AUTOLIB project (ELKARTEK 2019 ref. KK-2019/00035; Gobierno Vasco Dpto. Desarrollo económico e infraestructuras)

    A Review of Shared Control for Automated Vehicles: Theory and Applications

    Get PDF
    The last decade has shown an increasing interest on advanced driver assistance systems (ADAS) based on shared control, where automation is continuously supporting the driver at the control level with an adaptive authority. A first look at the literature offers two main research directions: 1) an ongoing effort to advance the theoretical comprehension of shared control, and 2) a diversity of automotive system applications with an increasing number of works in recent years. Yet, a global synthesis on these efforts is not available. To this end, this article covers the complete field of shared control in automated vehicles with an emphasis on these aspects: 1) concept, 2) categories, 3) algorithms, and 4) status of technology. Articles from the literature are classified in theory- and application-oriented contributions. From these, a clear distinction is found between coupled and uncoupled shared control. Also, model-based and model-free algorithms from these two categories are evaluated separately with a focus on systems using the steering wheel as the control interface. Model-based controllers tested by at least one real driver are tabulated to evaluate the performance of such systems. Results show that the inclusion of a driver model helps to reduce the conflicts at the steering. Also, variables such as driver state, driver effort, and safety indicators have a high impact on the calculation of the authority. Concerning the evaluation, driver-in-the-loop simulators are the most common platforms, with few works performed in real vehicles. Implementation in experimental vehicles is expected in the upcoming years
    corecore