173 research outputs found

    Recovering 6D Object Pose and Predicting Next-Best-View in the Crowd

    Full text link
    Object detection and 6D pose estimation in the crowd (scenes with multiple object instances, severe foreground occlusions and background distractors), has become an important problem in many rapidly evolving technological areas such as robotics and augmented reality. Single shot-based 6D pose estimators with manually designed features are still unable to tackle the above challenges, motivating the research towards unsupervised feature learning and next-best-view estimation. In this work, we present a complete framework for both single shot-based 6D object pose estimation and next-best-view prediction based on Hough Forests, the state of the art object pose estimator that performs classification and regression jointly. Rather than using manually designed features we a) propose an unsupervised feature learnt from depth-invariant patches using a Sparse Autoencoder and b) offer an extensive evaluation of various state of the art features. Furthermore, taking advantage of the clustering performed in the leaf nodes of Hough Forests, we learn to estimate the reduction of uncertainty in other views, formulating the problem of selecting the next-best-view. To further improve pose estimation, we propose an improved joint registration and hypotheses verification module as a final refinement step to reject false detections. We provide two additional challenging datasets inspired from realistic scenarios to extensively evaluate the state of the art and our framework. One is related to domestic environments and the other depicts a bin-picking scenario mostly found in industrial settings. We show that our framework significantly outperforms state of the art both on public and on our datasets.Comment: CVPR 2016 accepted paper, project page: http://www.iis.ee.ic.ac.uk/rkouskou/6D_NBV.htm

    Recovering 6D Object Pose: A Review and Multi-modal Analysis

    Full text link
    A large number of studies analyse object detection and pose estimation at visual level in 2D, discussing the effects of challenges such as occlusion, clutter, texture, etc., on the performances of the methods, which work in the context of RGB modality. Interpreting the depth data, the study in this paper presents thorough multi-modal analyses. It discusses the above-mentioned challenges for full 6D object pose estimation in RGB-D images comparing the performances of several 6D detectors in order to answer the following questions: What is the current position of the computer vision community for maintaining "automation" in robotic manipulation? What next steps should the community take for improving "autonomy" in robotics while handling objects? Our findings include: (i) reasonably accurate results are obtained on textured-objects at varying viewpoints with cluttered backgrounds. (ii) Heavy existence of occlusion and clutter severely affects the detectors, and similar-looking distractors is the biggest challenge in recovering instances' 6D. (iii) Template-based methods and random forest-based learning algorithms underlie object detection and 6D pose estimation. Recent paradigm is to learn deep discriminative feature representations and to adopt CNNs taking RGB images as input. (iv) Depending on the availability of large-scale 6D annotated depth datasets, feature representations can be learnt on these datasets, and then the learnt representations can be customized for the 6D problem

    L6DNet: Light 6 DoF Network for Robust and Precise Object Pose Estimation with Small Datasets

    Get PDF
    Estimating the 3D pose of an object is a challenging task that can be considered within augmented reality or robotic applications. In this paper, we propose a novel approach to perform 6 DoF object pose estimation from a single RGB-D image. We adopt a hybrid pipeline in two stages: data-driven and geometric respectively. The data-driven step consists of a classification CNN to estimate the object 2D location in the image from local patches, followed by a regression CNN trained to predict the 3D location of a set of keypoints in the camera coordinate system. To extract the pose information, the geometric step consists in aligning the 3D points in the camera coordinate system with the corresponding 3D points in world coordinate system by minimizing a registration error, thus computing the pose. Our experiments on the standard dataset LineMod show that our approach is more robust and accurate than state-of-the-art methods. The approach is also validated to achieve a 6 DoF positioning task by visual servoing.Comment: This work has been accepted at IEEE Robotics and Automation Letter
    • 

    corecore