3,388 research outputs found

    CRIS-IR 2006

    Get PDF
    The recognition of entities and their relationships in document collections is an important step towards the discovery of latent knowledge as well as to support knowledge management applications. The challenge lies on how to extract and correlate entities, aiming to answer key knowledge management questions, such as; who works with whom, on which projects, with which customers and on what research areas. The present work proposes a knowledge mining approach supported by information retrieval and text mining tasks in which its core is based on the correlation of textual elements through the LRD (Latent Relation Discovery) method. Our experiments show that LRD outperform better than other correlation methods. Also, we present an application in order to demonstrate the approach over knowledge management scenarios.Fundação para a Ciência e a Tecnologia (FCT) Denmark's Electronic Research Librar

    From Text to Knowledge

    Get PDF
    The global information space provided by the World Wide Web has changed dramatically the way knowledge is shared all over the world. To make this unbelievable huge information space accessible, search engines index the uploaded contents and provide efficient algorithmic machinery for ranking the importance of documents with respect to an input query. All major search engines such as Google, Yahoo or Bing are keyword-based, which is indisputable a very powerful tool for accessing information needs centered around documents. However, this unstructured, document-oriented paradigm of the World Wide Web has serious drawbacks, when searching for specific knowledge about real-world entities. When asking for advanced facts about entities, today's search engines are not very good in providing accurate answers. Hand-built knowledge bases such as Wikipedia or its structured counterpart DBpedia are excellent sources that provide common facts. However, these knowledge bases are far from being complete and most of the knowledge lies still buried in unstructured documents. Statistical machine learning methods have the great potential to help to bridge the gap between text and knowledge by (semi-)automatically transforming the unstructured representation of the today's World Wide Web to a more structured representation. This thesis is devoted to reduce this gap with Probabilistic Graphical Models. Probabilistic Graphical Models play a crucial role in modern pattern recognition as they merge two important fields of applied mathematics: Graph Theory and Probability Theory. The first part of the thesis will present a novel system called Text2SemRel that is able to (semi-)automatically construct knowledge bases from textual document collections. The resulting knowledge base consists of facts centered around entities and their relations. Essential part of the system is a novel algorithm for extracting relations between entity mentions that is based on Conditional Random Fields, which are Undirected Probabilistic Graphical Models. In the second part of the thesis, we will use the power of Directed Probabilistic Graphical Models to solve important knowledge discovery tasks in semantically annotated large document collections. In particular, we present extensions of the Latent Dirichlet Allocation framework that are able to learn in an unsupervised way the statistical semantic dependencies between unstructured representations such as documents and their semantic annotations. Semantic annotations of documents might refer to concepts originating from a thesaurus or ontology but also to user-generated informal tags in social tagging systems. These forms of annotations represent a first step towards the conversion to a more structured form of the World Wide Web. In the last part of the thesis, we prove the large-scale applicability of the proposed fact extraction system Text2SemRel. In particular, we extract semantic relations between genes and diseases from a large biomedical textual repository. The resulting knowledge base contains far more potential disease genes exceeding the number of disease genes that are currently stored in curated databases. Thus, the proposed system is able to unlock knowledge currently buried in the literature. The literature-derived human gene-disease network is subject of further analysis with respect to existing curated state of the art databases. We analyze the derived knowledge base quantitatively by comparing it with several curated databases with regard to size of the databases and properties of known disease genes among other things. Our experimental analysis shows that the facts extracted from the literature are of high quality

    Rapid Exploitation and Analysis of Documents

    Full text link

    Context Trees: Augmenting Geospatial Trajectories with Context

    Get PDF
    Exposing latent knowledge in geospatial trajectories has the potential to provide a better understanding of the movements of individuals and groups. Motivated by such a desire, this work presents the context tree, a new hierarchical data structure that summarises the context behind user actions in a single model. We propose a method for context tree construction that augments geospatial trajectories with land usage data to identify such contexts. Through evaluation of the construction method and analysis of the properties of generated context trees, we demonstrate the foundation for understanding and modelling behaviour afforded. Summarising user contexts into a single data structure gives easy access to information that would otherwise remain latent, providing the basis for better understanding and predicting the actions and behaviours of individuals and groups. Finally, we also present a method for pruning context trees, for use in applications where it is desirable to reduce the size of the tree while retaining useful information

    Linking social media, medical literature, and clinical notes using deep learning.

    Get PDF
    Researchers analyze data, information, and knowledge through many sources, formats, and methods. The dominant data format includes text and images. In the healthcare industry, professionals generate a large quantity of unstructured data. The complexity of this data and the lack of computational power causes delays in analysis. However, with emerging deep learning algorithms and access to computational powers such as graphics processing unit (GPU) and tensor processing units (TPUs), processing text and images is becoming more accessible. Deep learning algorithms achieve remarkable results in natural language processing (NLP) and computer vision. In this study, we focus on NLP in the healthcare industry and collect data not only from electronic medical records (EMRs) but also medical literature and social media. We propose a framework for linking social media, medical literature, and EMRs clinical notes using deep learning algorithms. Connecting data sources requires defining a link between them, and our key is finding concepts in the medical text. The National Library of Medicine (NLM) introduces a Unified Medical Language System (UMLS) and we use this system as the foundation of our own system. We recognize social media’s dynamic nature and apply supervised and semi-supervised methodologies to generate concepts. Named entity recognition (NER) allows efficient extraction of information, or entities, from medical literature, and we extend the model to process the EMRs’ clinical notes via transfer learning. The results include an integrated, end-to-end, web-based system solution that unifies social media, literature, and clinical notes, and improves access to medical knowledge for the public and experts
    • …
    corecore