5,705 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    The Cognitive Compressive Sensing Problem

    Full text link
    In the Cognitive Compressive Sensing (CCS) problem, a Cognitive Receiver (CR) seeks to optimize the reward obtained by sensing an underlying NN dimensional random vector, by collecting at most KK arbitrary projections of it. The NN components of the latent vector represent sub-channels states, that change dynamically from "busy" to "idle" and vice versa, as a Markov chain that is biased towards producing sparse vectors. To identify the optimal strategy we formulate the Multi-Armed Bandit Compressive Sensing (MAB-CS) problem, generalizing the popular Cognitive Spectrum Sensing model, in which the CR can sense KK out of the NN sub-channels, as well as the typical static setting of Compressive Sensing, in which the CR observes KK linear combinations of the NN dimensional sparse vector. The CR opportunistic choice of the sensing matrix should balance the desire of revealing the state of as many dimensions of the latent vector as possible, while not exceeding the limits beyond which the vector support is no longer uniquely identifiable.Comment: 8 pages, 2 figure

    Sensing the 'Health State' of our Society

    Get PDF
    Mobile phones are a pervasive platform for opportunistic sensing of behaviors and opinions. We show that location and communication sensors can be used to model individual symptoms, long-term health outcomes, and diff usion of opinions in society. For individuals, phone-based features can be used to predict changes in health, such as common colds, influenza, and stress, and automatically identify symptomatic days. For longer-term health outcomes such as obesity, we fi nd that weight changes of participants are correlated with exposure to peers who gained weight in the same period, which is in direct contrast to currently accepted theories of social contagion. Finally, as a proxy for understanding health education we examine change in political opinions during the 2008 US presidential election campaign. We discover dynamic patterns of homophily and use topic models (Latent Dirchlet Allocation) to understand the link between specfii c behaviors and changes in political opinions.United States. Army Research Laboratory (Cooperative Agreement Number W911NF-09-2-0053)United States. Air Force Office of Scientific Research (Award Number FA9550-10-1-0122)Swiss National Science Foundation (MULTI Project)United States. Air Force Office of Scientific Research (Award Number FA9550-08-1- 0132

    A Trust-Based Relay Selection Approach to the Multi-Hop Network Formation Problem in Cognitive Radio Networks

    Get PDF
    One of the major challenges for today’s wireless communications is to meet the growing demand for supporting an increasing diversity of wireless applications with limited spectrum resource. In cooperative communications and networking, users share resources and collaborate in a distributed approach, similar to entities of active social groups in self organizational communities. Users’ information may be shared by the user and also by the cooperative users, in distributed transmission. Cooperative communications and networking is a fairly new communication paradigm that promises significant capacity and multiplexing gain increase in wireless networks. This research will provide a cooperative relay selection framework that exploits the similarity of cognitive radio networks to social networks. It offers a multi-hop, reputation-based power control game for routing. In this dissertation, a social network model provides a humanistic approach to predicting relay selection and network analysis in cognitive radio networks

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network
    • …
    corecore