3,540 research outputs found

    Hierarchical Implicit Models and Likelihood-Free Variational Inference

    Full text link
    Implicit probabilistic models are a flexible class of models defined by a simulation process for data. They form the basis for theories which encompass our understanding of the physical world. Despite this fundamental nature, the use of implicit models remains limited due to challenges in specifying complex latent structure in them, and in performing inferences in such models with large data sets. In this paper, we first introduce hierarchical implicit models (HIMs). HIMs combine the idea of implicit densities with hierarchical Bayesian modeling, thereby defining models via simulators of data with rich hidden structure. Next, we develop likelihood-free variational inference (LFVI), a scalable variational inference algorithm for HIMs. Key to LFVI is specifying a variational family that is also implicit. This matches the model's flexibility and allows for accurate approximation of the posterior. We demonstrate diverse applications: a large-scale physical simulator for predator-prey populations in ecology; a Bayesian generative adversarial network for discrete data; and a deep implicit model for text generation.Comment: Appears in Neural Information Processing Systems, 201

    Grammar Variational Autoencoder

    Get PDF
    Deep generative models have been wildly successful at learning coherent latent representations for continuous data such as video and audio. However, generative modeling of discrete data such as arithmetic expressions and molecular structures still poses significant challenges. Crucially, state-of-the-art methods often produce outputs that are not valid. We make the key observation that frequently, discrete data can be represented as a parse tree from a context-free grammar. We propose a variational autoencoder which encodes and decodes directly to and from these parse trees, ensuring the generated outputs are always valid. Surprisingly, we show that not only does our model more often generate valid outputs, it also learns a more coherent latent space in which nearby points decode to similar discrete outputs. We demonstrate the effectiveness of our learned models by showing their improved performance in Bayesian optimization for symbolic regression and molecular synthesis

    Grammar induction for mildly context sensitive languages using variational Bayesian inference

    Full text link
    The following technical report presents a formal approach to probabilistic minimalist grammar induction. We describe a formalization of a minimalist grammar. Based on this grammar, we define a generative model for minimalist derivations. We then present a generalized algorithm for the application of variational Bayesian inference to lexicalized mildly context sensitive language grammars which in this paper is applied to the previously defined minimalist grammar
    • …
    corecore