379 research outputs found

    On Unexpectedness in Recommender Systems: Or How to Better Expect the Unexpected

    Get PDF
    Although the broad social and business success of recommender systems has been achieved across several domains, there is still a long way to go in terms of user satisfaction. One of the key dimensions for significant improvement is the concept of unexpectedness. In this paper, we propose a method to improve user satisfaction by generating unexpected recommendations based on the utility theory of economics. In particular, we propose a new concept of unexpectedness as recommending to users those items that depart from what they expect from the system. We define and formalize the concept of unexpectedness and discuss how it differs from the related notions of novelty, serendipity, and diversity. Besides, we suggest several mechanisms for specifying the users’ expectations and propose specific performance metrics to measure the unexpectedness of recommendation lists.We also take into consideration the quality of recommendations using certain utility functions and present an algorithm for providing the users with unexpected recommendations of high quality that are hard to discover but fairly match their interests. Finally, we conduct several experiments on “real-world” data sets to compare our recommendation results with some other standard baseline methods. The proposed approach outperforms these baseline methods in terms of unexpectedness and other important metrics, such as coverage and aggregate diversity, while avoiding any accuracy loss

    Current Challenges and Visions in Music Recommender Systems Research

    Full text link
    Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field

    Topic-Level Bayesian Surprise and Serendipity for Recommender Systems

    Full text link
    A recommender system that optimizes its recommendations solely to fit a user's history of ratings for consumed items can create a filter bubble, wherein the user does not get to experience items from novel, unseen categories. One approach to mitigate this undesired behavior is to recommend items with high potential for serendipity, namely surprising items that are likely to be highly rated. In this paper, we propose a content-based formulation of serendipity that is rooted in Bayesian surprise and use it to measure the serendipity of items after they are consumed and rated by the user. When coupled with a collaborative-filtering component that identifies similar users, this enables recommending items with high potential for serendipity. To facilitate the evaluation of topic-level models for surprise and serendipity, we introduce a dataset of book reading histories extracted from Goodreads, containing over 26 thousand users and close to 1.3 million books, where we manually annotate 449 books read by 4 users in terms of their time-dependent, topic-level surprise. Experimental evaluations show that models that use Bayesian surprise correlate much better with the manual annotations of topic-level surprise than distance-based heuristics, and also obtain better serendipitous item recommendation performance

    Peeking into the other half of the glass : handling polarization in recommender systems.

    Get PDF
    This dissertation is about filtering and discovering information online while using recommender systems. In the first part of our research, we study the phenomenon of polarization and its impact on filtering and discovering information. Polarization is a social phenomenon, with serious consequences, in real-life, particularly on social media. Thus it is important to understand how machine learning algorithms, especially recommender systems, behave in polarized environments. We study polarization within the context of the users\u27 interactions with a space of items and how this affects recommender systems. We first formalize the concept of polarization based on item ratings and then relate it to the item reviews, when available. We then propose a domain independent data science pipeline to automatically detect polarization using the ratings rather than the properties, typically used to detect polarization, such as item\u27s content or social network topology. We perform an extensive comparison of polarization measures on several benchmark data sets and show that our polarization detection framework can detect different degrees of polarization and outperforms existing measures in capturing an intuitive notion of polarization. We also investigate and uncover certain peculiar patterns that are characteristic of environments where polarization emerges: A machine learning algorithm finds it easier to learn discriminating models in polarized environments: The models will quickly learn to keep each user in the safety of their preferred viewpoint, essentially, giving rise to filter bubbles and making them easier to learn. After quantifying the extent of polarization in current recommender system benchmark data, we propose new counter-polarization approaches for existing collaborative filtering recommender systems, focusing particularly on the state of the art models based on Matrix Factorization. Our work represents an essential step toward the new research area concerned with quantifying, detecting and counteracting polarization in human-generated data and machine learning algorithms.We also make a theoretical analysis of how polarization affects learning latent factor models, and how counter-polarization affects these models. In the second part of our dissertation, we investigate the problem of discovering related information by recommendation of tags on social media micro-blogging platforms. Real-time micro-blogging services such as Twitter have recently witnessed exponential growth, with millions of active web users who generate billions of micro-posts to share information, opinions and personal viewpoints, daily. However, these posts are inherently noisy and unstructured because they could be in any format, hence making them difficult to organize for the purpose of retrieval of relevant information. One way to solve this problem is using hashtags, which are quickly becoming the standard approach for annotation of various information on social media, such that varied posts about the same or related topic are annotated with the same hashtag. However hashtags are not used in a consistent manner and most importantly, are completely optional to use. This makes them unreliable as the sole mechanism for searching for relevant information. We investigate mechanisms for consolidating the hashtag space using recommender systems. Our methods are general enough that they can be used for hashtag annotation in various social media services such as twitter, as well as for general item recommendations on systems that rely on implicit user interest data such as e-learning and news sites, or explicit user ratings, such as e-commerce and online entertainment sites. To conclude, we propose a methodology to extract stories based on two types of hashtag co-occurrence graphs. Our research in hashtag recommendation was able to exploit the textual content that is available as part of user messages or posts, and thus resulted in hybrid recommendation strategies. Using content within this context can bridge polarization boundaries. However, when content is not available, is missing, or is unreliable, as in the case of platforms that are rich in multimedia and multilingual posts, the content option becomes less powerful and pure collaborative filtering regains its important role, along with the challenges of polarization

    On Unexpectedness in Recommender Systems: Or How to Better Expect the Unexpected

    Get PDF
    Although the broad social and business success of recommender systems has been achieved across several domains, there is still a long way to go in terms of user satisfaction. One of the key dimensions for significant improvement is the concept of unexpectedness. In this paper, we propose a method to improve user satisfaction by generating unexpected recommendations based on the utility theory of economics. In particular, we propose a new concept of unexpectedness as recommending to users those items that depart from what they expect from the system. We define and formalize the concept of unexpectedness and discuss how it differs from the related notions of novelty, serendipity, and diversity. Besides, we suggest several mechanisms for specifying the users’ expectations and propose specific performance metrics to measure the unexpectedness of recommendation lists.We also take into consideration the quality of recommendations using certain utility functions and present an algorithm for providing the users with unexpected recommendations of high quality that are hard to discover but fairly match their interests. Finally, we conduct several experiments on “real-world” data sets to compare our recommendation results with some other standard baseline methods. The proposed approach outperforms these baseline methods in terms of unexpectedness and other important metrics, such as coverage and aggregate diversity, while avoiding any accuracy loss
    • …
    corecore