306 research outputs found

    Predictive Duty Cycle Adaptation for Wireless Camera Networks

    Get PDF
    Wireless sensor networks (WSN) typically employ dynamic duty cycle schemes to efficiently handle different patterns of communication traffic in the network. However, existing duty cycling approaches are not suitable for event-driven WSN, in particular, camera-based networks designed to track humans and objects. A characteristic feature of such networks is the spatially-correlated bursty traffic that occurs in the vicinity of potentially highly mobile objects. In this paper, we propose a concept of indirect sensing in the MAC layer of a wireless camera network and an active duty cycle adaptation scheme based on Kalman filter that continuously predicts and updates the location of the object that triggers bursty communication traffic in the network. This prediction allows the camera nodes to alter their communication protocol parameters prior to the actual increase in the communication traffic. Our simulations demonstrate that our active adaptation strategy outperforms TMAC not only in terms of energy efficiency and communication latency, but also in terms of TIBPEA, a QoS metric for event-driven WSN

    Energy-Efficient Communication in Wireless Networks

    Get PDF
    This chapter describes the evolution of, and state of the art in, energy‐efficient techniques for wirelessly communicating networks of embedded computers, such as those found in wireless sensor network (WSN), Internet of Things (IoT) and cyberphysical systems (CPS) applications. Specifically, emphasis is placed on energy efficiency as critical to ensuring the feasibility of long lifetime, low‐maintenance and increasingly autonomous monitoring and control scenarios. A comprehensive summary of link layer and routing protocols for a variety of traffic patterns is discussed, in addition to their combination and evaluation as full protocol stacks

    Networking protocols for long life wireless sensor networks

    Get PDF
    My original contribution to knowledge is the creation of a WSN system that further improves the functionality of existing technology, whilst achieving improved power consumption and reliability. This thesis concerns the development of industrially applicable wireless sensor networks that are low-power, reliable and latency aware. This work aims to improve upon the state of the art in networking protocols for low-rate multi-hop wireless sensor networks. Presented is an application-driven co-design approach to the development of such a system. Starting with the physical layer, hardware was designed to meet industry specified requirements. The end system required further investigation of communications protocols that could achieve the derived application-level system performance specifications. A CSMA/TDMA hybrid MAC protocol was developed, leveraging numerous techniques from the literature and novel optimisations. It extends the current art with respect to power consumption for radio duty-cycled applications, and reliability, in dense wireless sensor networks, whilst respecting latency bounds. Specifically, it provides 100% packet delivery for 11 concurrent senders transmitting towards a single radio duty cycled sink-node. This is representative of an order of magnitude improvement over the comparable art, considering MAC-only mechanisms. A novel latency-aware routing protocol was developed to exploit the developed hardware and MAC protocol. It is based on a new weighted objective function with multiple fail safe mechanisms to ensure extremely high reliability and robustness. The system was empirically evaluated on two hardware platforms. These are the application-specific custom 868 MHz node and the de facto community-standard TelosB. Extensive empirical comparative performance analyses were conducted against the relevant art to demonstrate the advances made. The resultant system is capable of exceeding 10-year battery life, and exhibits reliability performance in excess of 99.9%

    ECOSENSE: An Energy Consumption Protocol for Wireless Sensor Networks

    Get PDF
    AbstractThis paper ‘ECOSENSE’ proposes a medium access protocol derived for wireless sensor networks. Energy is a precious resource for wireless sensor networks, as sensor nodes are powered by small batteries. Various approaches have been proposed so far, to increase the life of wireless sensor networks. With the goal of developing a practical, efficient energy consumption protocol for wireless sensor networks, we introduced a threshold policy for the nodes in the entire network, where the sensors are distributed activated, whenever they are required. We calculated the life period of sensors and using priority levels and threshold values, we prolong the lifespan of sensor nodes. Scheduling is done according to the remaining life period of sensor nodes. We compare our algorithm with the existing S-MAC protocol and found considerably better due to its reconfigurable activation policy

    Data and resource management in wireless networks via data compression, GPS-free dissemination, and learning

    Get PDF
    “This research proposes several innovative approaches to collect data efficiently from large scale WSNs. First, a Z-compression algorithm has been proposed which exploits the temporal locality of the multi-dimensional sensing data and adapts the Z-order encoding algorithm to map multi-dimensional data to a one-dimensional data stream. The extended version of Z-compression adapts itself to working in low power WSNs running under low power listening (LPL) mode, and comprehensively analyzes its performance compressing both real-world and synthetic datasets. Second, it proposed an efficient geospatial based data collection scheme for IoTs that reduces redundant rebroadcast of up to 95% by only collecting the data of interest. As most of the low-cost wireless sensors won’t be equipped with a GPS module, the virtual coordinates are used to estimate the locations. The proposed work utilizes the anchor-based virtual coordinate system and DV-Hop (Distance vector of hops to anchors) to estimate the relative location of nodes to anchors. Also, it uses circle and hyperbola constraints to encode the position of interest (POI) and any user-defined trajectory into a data request message which allows only the sensors in the POI and routing trajectory to collect and route. It also provides location anonymity by avoiding using and transmitting GPS location information. This has been extended also for heterogeneous WSNs and refined the encoding algorithm by replacing the circle constraints with the ellipse constraints. Last, it proposes a framework that predicts the trajectory of the moving object using a Sequence-to-Sequence learning (Seq2Seq) model and only wakes-up the sensors that fall within the predicted trajectory of the moving object with a specially designed control packet. It reduces the computation time of encoding geospatial trajectory by more than 90% and preserves the location anonymity for the local edge servers”--Abstract, page iv

    Congestion Avoidance Energy Efficient MAC Protocol for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Network (WSNs) are generally energy-constrained and resource-constrained. When multiple simultaneous events occur in densely deployed WSNs, nodes near the base station can become congested, decreasing the network performance. Additionally, multiple nodes may sense an event leading to spatially-correlated contention, further increasing congestion. In order to mitigate the effects of congestion near the base station, an energy-efficient Media Access Control (MAC) protocol that can handle multiple simultaneous events and spatially-correlated contention is needed. Energy efficiency is important and can be achieved using duty cycles but they could degrade the network performance in terms of latency. Existing protocols either provide support for congestion near the base station or for managing spatially-correlated contention. To provide energy-efficiency while maintaining the networks performance under higher traffic load, we propose an energy-efficient congestion-aware MAC protocol. This protocol provides support for congestion near the base station and spatially-correlated contention by employing a traffic shaping approach to manage the arrival times of packets to the layers close to the base station. We implemented our protocol using the ns-2 simulator for evaluating its performance. Results show that our protocol has an improvement in the number of packets received at the base station while consuming less energy

    MAC Protocols for Wake-up Radio: Principles, Modeling and Performance Analysis

    Full text link
    © 2018 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] In wake-up radio (WuR) enabled wireless sensor networks (WSNs), a node triggers a data communication at any time instant by sending a wake-up call (WuC) in an on-demand manner. Such wake-up operations eliminate idle listening and overhearing burden for energy consumption in duty-cycled WSNs. Although WuR exhibits its superiority for light traffic, it is inefficient to handle high traffic load in a network. This paper makes an effort towards improving the performance of WuR under diverse load conditions with a twofold contribution. We first propose three protocols that support variable traffic loads by enabling respectively clear channel assessment (CCA), backoff plus CCA, and adaptive WuC transmissions. These protocols provide various options for achieving reliable data transmission, low latency, and energy efficiency for ultralow power consumption applications. Then, we develop an analytical framework based on an M/G/1/2 queue to evaluate the performance of these WuR protocols. Discrete-event simulations validate the accuracy of the analytical models.The work of V. Pla was supported by the Spanish Ministry of Economy, Industry and Competitiveness under Grant TIN2013-47272-C2-1-R. Paper no. TII-17-2251. (Corresponding author: Frank Y. Li)Ghose, D.; Li, F.; Pla, V. (2018). MAC Protocols for Wake-up Radio: Principles, Modeling and Performance Analysis. IEEE Transactions on Industrial Informatics. 14(5):2294-2306. https://doi.org/10.1109/TII.2018.2805321S2294230614
    • 

    corecore