1,425 research outputs found

    The Fundamental Limits of Broadcasting in Dense Wireless Mobile Networks

    Get PDF
    In this paper, we investigate the fundamental properties of broadcasting in {em mobile} wireless networks. In particular, we characterize broadcast capacity and latency of a mobile network, subject to the condition that the stationary node spatial distribution generated by the mobility model is uniform. We first study the intrinsic properties of broadcasting, and present the {sc RippleCast} broadcasting scheme that simultaneously achieves asymptotically optimal broadcast capacity and latency, subject to a weak upper bound on maximum node velocity and under the assumption of static broadcast source. We then extend {sc RippleCast} with the novel notion of center-casting, and prove that asymptotically optimal broadcast capacity and latency can be achieved also when the broadcast source is mobile. This study intendedly ignores the burden related to the selection of broadcast relay nodes within the mobile network, and shows that optimal broadcasting in mobile networks is, in principle, possible. We then investigate the broadcasting problem when the relay selection burden is taken into account, and present a combined distributed leader election and broadcasting scheme achieving a broadcast capacity and latency which is within a Theta((logn)1+frac2alpha)Theta((log n)^{1+frac{2}{alpha}}) factor from optimal, where nn is the number of mobile nodes and alpha>2alpha>2 is the path loss exponent. However, this result holds only under the assumption that the upper bound on node velocity converges to zero (although with a very slow, poly-logarithmic rate) as nn grows to infinity

    On the Fundamental Limits of Broadcasting in Wireless Mobile Networks

    Get PDF
    In this talk, we investigate the fundamental properties of broadcasting in mobile wireless networks. In particular, we characterize broadcast capacity and latency of a mobile network, subject to the condition that the stationary node spatial distribution generated by the mobility model is uniform. We first study the intrinsic properties of broadcasting, and present a broadcasting scheme, called RippleCast, that simultaneously achieves asymptotically optimal broadcast capacity and latency, subject to a weak upper bound on the maximum node velocity. This study intendedly ignores the burden related to the selection of broadcast relay nodes within the mobile network, and shows that optimal broadcasting in mobile networks is, in principle, possible. We then investigate the broadcasting problem when the relay selection burden is taken into account, and present a combined distributed leader election and broadcasting scheme achieving a broadcast capacity and latency which is within a Theta((logn)1+frac2alpha)Theta((log n)^{1+frac{2}{alpha}}) factor from optimal, where nn is the number of mobile nodes and alpha>2alpha>2 is the path loss exponent. However, this result holds only under the assumption that the upper bound on node velocity converges to zero (although with a very slow, poly-logarithmic rate) as nn grows to infinity. To the best of our knowledge, our is the first paper investigating the effects of node mobility on the fundamental properties of broadcasting, and showing that, while optimal broadcasting in a mobile network is in principle possible, the coordination efforts related to the selection of broadcast relay nodes lead to sub-optimal broadcasting performance

    Broadcasting in LTE-Advanced networks using multihop D2D communications

    Get PDF
    In an LTE-Advanced network, network-controlled Device-to-Device (D2D) communications can be combined in a multihop fashion to distribute broadcasts over user-defined (and possibly large) areas, with small latencies and occupying few resources. Such a service may be exploited for several purposes, (e.g. Internet of Things, Vehicular communications). Engineering a multihop D2D-based broadcast service requires working at both the application level on the User Equipment (UE) and at the resource-allocation level within the eNodeBs. This paper describes the necessary modifications at both the UE and the eNodeB, what the main issues are, and how to solve them efficiently. We evaluate the performance of the above service using system-level simulations, and demonstrate its advantages over standard broadcasting techniques

    A fast and reliable broadcast service for LTE-advanced exploiting multihop device-to-device transmissions

    Get PDF
    Several applications, from the Internet of Things for smart cities to those for vehicular networks, need fast and reliable proximity-based broadcast communications, i.e., the ability to reach all peers in a geographical neighborhood around the originator of a message, as well as ubiquitous connectivity. In this paper, we point out the inherent limitations of the LTE (Long-Term Evolution) cellular network, which make it difficult, if possible at all, to engineer such a service using traditional infrastructure-based communications. We argue, instead, that network-controlled device-to-device (D2D) communications, relayed in a multihop fashion, can efficiently support this service. To substantiate the above claim, we design a proximity-based broadcast service which exploits multihop D2D. We discuss the relevant issues both at the UE (User Equipment), which has to run applications, and within the network (i.e., at the eNodeBs), where suitable resource allocation schemes have to be enforced. We evaluate the performance of a multihop D2D broadcasting using system-level simulations, and demonstrate that it is fast, reliable and economical from a resource consumption standpoint

    Towards Optimal Distributed Node Scheduling in a Multihop Wireless Network through Local Voting

    Full text link
    In a multihop wireless network, it is crucial but challenging to schedule transmissions in an efficient and fair manner. In this paper, a novel distributed node scheduling algorithm, called Local Voting, is proposed. This algorithm tries to semi-equalize the load (defined as the ratio of the queue length over the number of allocated slots) through slot reallocation based on local information exchange. The algorithm stems from the finding that the shortest delivery time or delay is obtained when the load is semi-equalized throughout the network. In addition, we prove that, with Local Voting, the network system converges asymptotically towards the optimal scheduling. Moreover, through extensive simulations, the performance of Local Voting is further investigated in comparison with several representative scheduling algorithms from the literature. Simulation results show that the proposed algorithm achieves better performance than the other distributed algorithms in terms of average delay, maximum delay, and fairness. Despite being distributed, the performance of Local Voting is also found to be very close to a centralized algorithm that is deemed to have the optimal performance

    On the Data Gathering Capacity and Latency in Wireless

    Get PDF
    In this paper, we investigate the fundamental properties of data gathering in wirelesssensor networks, in terms of both transport capacity and latency. We consider a scenarioin which s(n) out of n total network nodes have to deliver data to a set of d(n) sink nodesat a constant rate f(n; s(n); d(n)). The goal is to characterize the maximum achievablerate, and the latency in data delivery. We present a simple data gathering scheme thatachieves asymptotically optimal data gathering capacity and latency with arbitrary net-work deployments when d(n) = 1, and for most scaling regimes of s(n) and d(n) whend(n) > 1 in case of square grid and random node deployments. Differently from mostprevious work, our results and the presented data gathering scheme do not sacrifice en-ergy efficiency to the need of maximizing capacity and minimizing latency. Finally, weconsider the effects of a simple form of data aggregation on data gathering performance,and show that capacity can be increased of a factor f(n) with respect to the case of nodata aggregation, where f(n) is the node density. To the best of our knowledge, theones presented in this paper are the first results showing that asymptotically optimal datagathering capacity and latency can be achieved in arbitrary networks in an energy efficientway

    Reliable routing scheme for indoor sensor networks

    Get PDF
    Indoor Wireless sensor networks require a highly dynamic, adaptive routing scheme to deal with the high rate of topology changes due to fading of indoor wireless channels. Besides that, energy consumption rate needs to be consistently distributed among sensor nodes and efficient utilization of battery power is essential. If only the link reliability metric is considered in the routing scheme, it may create long hops routes, and the high quality paths will be frequently used. This leads to shorter lifetime of such paths; thereby the entire network's lifetime will be significantly minimized. This paper briefly presents a reliable load-balanced routing (RLBR) scheme for indoor ad hoc wireless sensor networks, which integrates routing information from different layers. The proposed scheme aims to redistribute the relaying workload and the energy usage among relay sensor nodes to achieve balanced energy dissipation; thereby maximizing the functional network lifetime. RLBR scheme was tested and benchmarked against the TinyOS-2.x implementation of MintRoute on an indoor testbed comprising 20 Mica2 motes and low power listening (LPL) link layer provided by CC1000 radio. RLBR scheme consumes less energy for communications while reducing topology repair latency and achieves better connectivity and communication reliability in terms of end-to-end packets delivery performance
    • …
    corecore