2,825 research outputs found

    Neighbour coverage: a dynamic probabilistic route discovery for mobile ad hoc networks

    Get PDF
    Blind flooding is extensively use in ad hoc routing protocols for on-demand route discovery, where a mobile node blindly rebroadcasts received route request (RREQ) packets until a route to a particular destination is established. This can potentially lead to high channel contention, causing redundant retransmissions and thus excessive packet collisions in the network. Such a phenomenon induces what is known as broadcast storm problem, which has been shown to greatly increase the network communication overhead and end-to-end delay. In this paper, we show that the deleterious impact of such a problem can be reduced if measures are taken during the dissemination of RREQ packets. We propose a generic probabilistic method for route discovery, that is simple to implement and can significantly reduce the overhead associated with the dissemination of RREQs. Our analysis reveals that equipping AODV with probabilistic route discovery can result in significant reduction of routing control overhead while achieving good throughput

    A Voice for the Voiceless: Peer-to-peer Mobile Phone Networks for a Community Radio Service

    Get PDF
    We propose a new application for mobile ad-hoc networks (MANETs) ā€“ community radio. We argue how MANETS help overcome important limitations in how community radio is currently operationalized. We identify critical design elements for a MANET based community radio service and propose a broad architecture for the same. We then investigate a most critical issueā€“ the choice of the network wide broadcast protocol for the audio content. We identify desired characteristics of a community radio broadcasting service. We choose and evaluate eight popular broadcasting protocols on these characteristics, to find the protocols most suited for our application.

    Efficient Broadcasting for a Mobile Ad-hoc Network based Peer-to-peer Community Radio Service

    Get PDF
    Ad-hoc networks consisting entirely of simple mobile phones can be used to deploy village level telephony. We investigate a novel application for such networks ā€“ a peer-to peer community radio service. We envision a system, where any user in the network is equally empowered to generate and distribute audio content to the entire network, using his or her mobile phone. This study concentrates on a critical aspect of this service ā€“ the choice of the network-wide broadcast protocol. Using extensive simulations, we evaluate the suitability of various broadcast techniques for a rural peer-to-peer mobile adhoc network. Our simulations identify the best choice of protocols under various village network conditions while simultaneously identifying limitations of the current protocols.

    An Adaptive Probabilistic Model for Broadcasting in Mobile Ad Hoc Networks

    Get PDF
    Ad hoc peer-to-peer mobile phone networks (phone MANETs) enable cheap village level telephony for cash-strapped, off-the-grid communities. Broadcasting is a fundamental operation in such manets and is used for route discovery. This paper proposed a new broadcast technique that is lightweight, efficient and incurs low latency. Using extensive simulations, we compare our proposed technique to existing lightweight protocols. The results show that our technique is successful in outperforming existing lightweight techniques on the criteria that are critical for a phone-MANET.

    Model checking medium access control for sensor networks

    Get PDF
    We describe verification of S-MAC, a medium access control protocol designed for wireless sensor networks, by means of the PRISM model checker. The S-MAC protocol is built on top of the IEEE 802.11 standard for wireless ad hoc networks and, as such, it uses the same randomised backoff procedure as a means to avoid collision. In order to minimise energy consumption, in S-MAC, nodes are periodically put into a sleep state. Synchronisation of the sleeping schedules is necessary for the nodes to be able to communicate. Intuitively, energy saving obtained through a periodic sleep mechanism will be at the expense of performance. In previous work on S-MAC verification, a combination of analytical techniques and simulation has been used to confirm the correctness of this intuition for a simplified (abstract) version of the protocol in which the initial schedules coordination phase is assumed correct. We show how we have used the PRISM model checker to verify the behaviour of S-MAC and compare it to that of IEEE 802.11

    Improving route discovery in on-demand routing protocols using local topology information in MANETs

    Get PDF
    Most existing routing protocols proposed for MANETs use flooding as a broadcast technique for the propagation of network control packets; a particular example of this is the dissemination of route requests (RREQs), which facilitate route discovery. In flooding, each mobile node rebroadcasts received packets, which, in this manner, are propagated network-wide with considerable overhead. This paper improves on the performance of existing routing protocols by reducing the communication overhead incurred during the route discovery process by implementing a new broadcast algorithm called the adjusted probabilistic flooding on the Ad-Hoc on Demand Distance Vector (AODV) protocol. AODV [3] is a well-known and widely studied algorithm which has been shown over the past few years to maintain an overall lower routing overhead compared to traditional proactive schemes, even though it uses flooding to propagate RREQs. Our results, as presented in this paper, reveal that equipping AODV with fixed and adjusted probabilistic flooding, instead, helps reduce the overhead of the route discovery process whilst maintaining comparable performance levels in terms of saved rebroadcasts and reachability as achieved by conventional AODV\@. Moreover, the results indicate that the adjusted probabilistic technique results in better performance compared to the fixed one for both of these metrics

    A probabilistic approach to reduce the route establishment overhead in AODV algorithm for manet

    Full text link
    Mobile Ad-hoc Networks (MANETS) is a collection of wireless nodes without any infrastructure support. The nodes in MANET can act as either router or source and the control of the network is distributed among nodes. The nodes in MANETS are highly mobile and it maintains dynamic interconnection between those mobile nodes. MANTEs have been considered as isolated stand-alone network. This can turn the dream of networking "at any time and at any where" into reality. The main purpose of this paper is to study the issues in route discovery process in AODV protocol for MANET. Flooding of route request message imposes major concern in route establishment. This paper suggests a new approach to reduce the routing overhead during the route discovery phase. By considering the previous behaviour of the network, the new protocol reduces the unwanted searches during route establishment processComment: International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.2, March 201

    Performance evaluation of adjusted probabilistic broadcasting in MANETs

    Get PDF
    Appropriate use of a probabilistic broadcasting method in MANETs can decrease the number of rebroadcasts, and as a result reduce the opportunity of contention and collision among neighbouring nodes. In this paper we evaluate the performance of adjusted probabilistic flooding by comparing it to "simple" flooding as used with the ad hoc on demand distance vector (AODV) routing protocol as well as a fixed probabilistic approach. The results reveal that the adjusted probabilistic flooding exhibits superior performance in terms of both reachability and saved rebroadcast
    • ā€¦
    corecore