4,946 research outputs found

    Latency Analysis of Coded Computation Schemes over Wireless Networks

    Full text link
    Large-scale distributed computing systems face two major bottlenecks that limit their scalability: straggler delay caused by the variability of computation times at different worker nodes and communication bottlenecks caused by shuffling data across many nodes in the network. Recently, it has been shown that codes can provide significant gains in overcoming these bottlenecks. In particular, optimal coding schemes for minimizing latency in distributed computation of linear functions and mitigating the effect of stragglers was proposed for a wired network, where the workers can simultaneously transmit messages to a master node without interference. In this paper, we focus on the problem of coded computation over a wireless master-worker setup with straggling workers, where only one worker can transmit the result of its local computation back to the master at a time. We consider 3 asymptotic regimes (determined by how the communication and computation times are scaled with the number of workers) and precisely characterize the total run-time of the distributed algorithm and optimum coding strategy in each regime. In particular, for the regime of practical interest where the computation and communication times of the distributed computing algorithm are comparable, we show that the total run-time approaches a simple lower bound that decouples computation and communication, and demonstrate that coded schemes are Θ(log(n))\Theta(\log(n)) times faster than uncoded schemes

    Random Linear Network Coding For Time Division Duplexing: When To Stop Talking And Start Listening

    Full text link
    A new random linear network coding scheme for reliable communications for time division duplexing channels is proposed. The setup assumes a packet erasure channel and that nodes cannot transmit and receive information simultaneously. The sender transmits coded data packets back-to-back before stopping to wait for the receiver to acknowledge (ACK) the number of degrees of freedom, if any, that are required to decode correctly the information. We provide an analysis of this problem to show that there is an optimal number of coded data packets, in terms of mean completion time, to be sent before stopping to listen. This number depends on the latency, probabilities of packet erasure and ACK erasure, and the number of degrees of freedom that the receiver requires to decode the data. This scheme is optimal in terms of the mean time to complete the transmission of a fixed number of data packets. We show that its performance is very close to that of a full duplex system, while transmitting a different number of coded packets can cause large degradation in performance, especially if latency is high. Also, we study the throughput performance of our scheme and compare it to existing half-duplex Go-back-N and Selective Repeat ARQ schemes. Numerical results, obtained for different latencies, show that our scheme has similar performance to the Selective Repeat in most cases and considerable performance gain when latency and packet error probability is high.Comment: 9 pages, 9 figures, Submitted to INFOCOM'0

    Coded Computation Against Processing Delays for Virtualized Cloud-Based Channel Decoding

    Get PDF
    The uplink of a cloud radio access network architecture is studied in which decoding at the cloud takes place via network function virtualization on commercial off-the-shelf servers. In order to mitigate the impact of straggling decoders in this platform, a novel coding strategy is proposed, whereby the cloud re-encodes the received frames via a linear code before distributing them to the decoding processors. Transmission of a single frame is considered first, and upper bounds on the resulting frame unavailability probability as a function of the decoding latency are derived by assuming a binary symmetric channel for uplink communications. Then, the analysis is extended to account for random frame arrival times. In this case, the trade-off between average decoding latency and the frame error rate is studied for two different queuing policies, whereby the servers carry out per-frame decoding or continuous decoding, respectively. Numerical examples demonstrate that the bounds are useful tools for code design and that coding is instrumental in obtaining a desirable compromise between decoding latency and reliability.Comment: 11 pages and 12 figures, Submitte
    corecore