276 research outputs found

    Liveness Checking of the HotStuff Protocol Family

    Full text link
    Byzantine consensus protocols aim at maintaining safety guarantees under any network synchrony model and at providing liveness in partially or fully synchronous networks. However, several Byzantine consensus protocols have been shown to violate liveness properties under certain scenarios. Existing testing methods for checking the liveness of consensus protocols check for time-bounded liveness violations, which generate a large number of false positives. In this work, for the first time, we check the liveness of Byzantine consensus protocols using the temperature and lasso detection methods, which require the definition of ad-hoc system state abstractions. We focus on the HotStuff protocol family that has been recently developed for blockchain consensus. In this family, the HotStuff protocol is both safe and live under the partial synchrony assumption, while the 2-Phase Hotstuff and Sync HotStuff protocols are known to violate liveness in subtle fault scenarios. We implemented our liveness checking methods on top of the Twins automated unit test generator to test the HotStuff protocol family. Our results indicate that our methods successfully detect all known liveness violations and produce fewer false positives than the traditional time-bounded liveness checks.Comment: Preprint of a paper accepted at IEEE PRDC 202

    Second-generation PLINK: rising to the challenge of larger and richer datasets

    Get PDF
    PLINK 1 is a widely used open-source C/C++ toolset for genome-wide association studies (GWAS) and research in population genetics. However, the steady accumulation of data from imputation and whole-genome sequencing studies has exposed a strong need for even faster and more scalable implementations of key functions. In addition, GWAS and population-genetic data now frequently contain probabilistic calls, phase information, and/or multiallelic variants, none of which can be represented by PLINK 1's primary data format. To address these issues, we are developing a second-generation codebase for PLINK. The first major release from this codebase, PLINK 1.9, introduces extensive use of bit-level parallelism, O(sqrt(n))-time/constant-space Hardy-Weinberg equilibrium and Fisher's exact tests, and many other algorithmic improvements. In combination, these changes accelerate most operations by 1-4 orders of magnitude, and allow the program to handle datasets too large to fit in RAM. This will be followed by PLINK 2.0, which will introduce (a) a new data format capable of efficiently representing probabilities, phase, and multiallelic variants, and (b) extensions of many functions to account for the new types of information. The second-generation versions of PLINK will offer dramatic improvements in performance and compatibility. For the first time, users without access to high-end computing resources can perform several essential analyses of the feature-rich and very large genetic datasets coming into use.Comment: 2 figures, 1 additional fil

    Machine-Learned Caching of Datasets

    Get PDF
    Generally, the present disclosure is directed to creating and/or modifying a pre-cache for a client device connected to a remote server containing a dataset. In particular, in some implementations, the systems and methods of the present disclosure can include or otherwise leverage one or more machine-learned models to predict the likelihood a particular piece of data will be used (e.g. opened, edited, saved, etc.) within a time frame based on information about the data, the user’s interaction with the data, and/or the user’s schedule

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    LTSmin: high-performance language-independent model checking

    Get PDF
    In recent years, the LTSmin model checker has been extended with support for several new modelling languages, including probabilistic (Mapa) and timed systems (Uppaal). Also, connecting additional language front-ends or ad-hoc state-space generators to LTSmin was simplified using custom C-code. From symbolic and distributed reachability analysis and minimisation, LTSmin’s functionality has developed into a model checker with multi-core algorithms for on-the-fly LTL checking with partial-order reduction, and multi-core symbolic checking for the modal μ calculus, based on the multi-core decision diagram package Sylvan.\ud In LTSmin, the modelling languages and the model checking algorithms are connected through a Partitioned Next-State Interface (Pins), that allows to abstract away from language details in the implementation of the analysis algorithms and on-the-fly optimisations. In the current paper, we present an overview of the toolset and its recent changes, and we demonstrate its performance and versatility in two case studies

    What broke where for distributed and parallel applications — a whodunit story

    Get PDF
    Detection, diagnosis and mitigation of performance problems in today\u27s large-scale distributed and parallel systems is a difficult task. These large distributed and parallel systems are composed of various complex software and hardware components. When the system experiences some performance or correctness problem, developers struggle to understand the root cause of the problem and fix in a timely manner. In my thesis, I address these three components of the performance problems in computer systems. First, we focus on diagnosing performance problems in large-scale parallel applications running on supercomputers. We developed techniques to localize the performance problem for root-cause analysis. Parallel applications, most of which are complex scientific simulations running in supercomputers, can create up to millions of parallel tasks that run on different machines and communicate using the message passing paradigm. We developed a highly scalable and accurate automated debugging tool called PRODOMETER, which uses sophisticated algorithms to first, create a logical progress dependency graph of the tasks to highlight how the problem spread through the system manifesting as a system-wide performance issue. Second, uses this logical progress dependence graph to identify the task where the problem originated. Finally, PRODOMETER pinpoints the code region corresponding to the origin of the bug. Second, we developed a tool-chain that can detect performance anomaly using machine-learning techniques and can achieve very low false positive rate. Our input-aware performance anomaly detection system consists of a scalable data collection framework to collect performance related metrics from different granularity of code regions, an offline model creation and prediction-error characterization technique, and a threshold based anomaly-detection-engine for production runs. Our system requires few training runs and can handle unknown inputs and parameter combinations by dynamically calibrating the anomaly detection threshold according to the characteristics of the input data and the characteristics of the prediction-error of the models. Third, we developed performance problem mitigation scheme for erasure-coded distributed storage systems. Repair operations of the failed blocks in erasure-coded distributed storage system take really long time in networked constrained data-centers. The reason being, during the repair operation for erasure-coded distributed storage, a lot of data from multiple nodes are gathered into a single node and then a mathematical operation is performed to reconstruct the missing part. This process severely congests the links toward the destination where newly recreated data is to be hosted. We proposed a novel distributed repair technique, called Partial-Parallel-Repair (PPR) that performs this reconstruction in parallel on multiple nodes and eliminates network bottlenecks, and as a result, greatly speeds up the repair process. Fourth, we study how for a class of applications, performance can be improved (or performance problems can be mitigated) by selectively approximating some of the computations. For many applications, the main computation happens inside a loop that can be logically divided into a few temporal segments, we call phases. We found that while approximating the initial phases might severely degrade the quality of the results, approximating the computation for the later phases have very small impact on the final quality of the result. Based on this observation, we developed an optimization framework that for a given budget of quality-loss, would find the best approximation settings for each phase in the execution

    compressive synthetic aperture sonar imaging with distributed optimization

    Get PDF
    Synthetic aperture sonar (SAS) provides high-resolution acoustic imaging by processing coherently the backscattered acoustic signal recorded over consecutive pings. Traditionally, object detection and classification tasks rely on high-resolution seafloor mapping achieved with widebeam, broadband SAS systems. However, aspect- or frequency-specific information is crucial for improving the performance of automatic target recognition algorithms. For example, low frequencies can be partly transmitted through objects or penetrate the seafloor providing information about internal structure and buried objects, while multiple views provide information about the object's shape and dimensions. Sub-band and limited-view processing, though, degrades the SAS resolution. In this paper, SAS imaging is formulated as an l1-norm regularized least-squares optimization problem which improves the resolution by promoting a parsimonious representation of the data. The optimization problem is solved in a distributed and computationally efficient way with an algorithm based on the alternating direction method of multipliers. The resulting SAS image is the consensus outcome of collaborative filtering of the data from each ping. The potential of the proposed method for high-resolution, narrowband, and limited-aspect SAS imaging is demonstrated with simulated and experimental data.Synthetic aperture sonar (SAS) provides high-resolution acoustic imaging by processing coherently the backscattered acoustic signal recorded over consecutive pings. Traditionally, object detection and classification tasks rely on high-resolution seafloor mapping achieved with widebeam, broadband SAS systems. However, aspect- or frequency-specific information is crucial for improving the performance of automatic target recognition algorithms. For example, low frequencies can be partly transmitted through objects or penetrate the seafloor providing information about internal structure and buried objects, while multiple views provide information about the object's shape and dimensions. Sub-band and limited-view processing, though, degrades the SAS resolution. In this paper, SAS imaging is formulated as an l1-norm regularized least-squares optimization problem which improves the resolution by promoting a parsimonious representation of the data. The optimization problem is solved in a distributed and computati..

    Asymmetric Pruning for Learning Cascade Detectors

    Full text link
    Cascade classifiers are one of the most important contributions to real-time object detection. Nonetheless, there are many challenging problems arising in training cascade detectors. One common issue is that the node classifier is trained with a symmetric classifier. Having a low misclassification error rate does not guarantee an optimal node learning goal in cascade classifiers, i.e., an extremely high detection rate with a moderate false positive rate. In this work, we present a new approach to train an effective node classifier in a cascade detector. The algorithm is based on two key observations: 1) Redundant weak classifiers can be safely discarded; 2) The final detector should satisfy the asymmetric learning objective of the cascade architecture. To achieve this, we separate the classifier training into two steps: finding a pool of discriminative weak classifiers/features and training the final classifier by pruning weak classifiers which contribute little to the asymmetric learning criterion (asymmetric classifier construction). Our model reduction approach helps accelerate the learning time while achieving the pre-determined learning objective. Experimental results on both face and car data sets verify the effectiveness of the proposed algorithm. On the FDDB face data sets, our approach achieves the state-of-the-art performance, which demonstrates the advantage of our approach.Comment: 14 page
    • …
    corecore