18,790 research outputs found

    Data association and occlusion handling for vision-based people tracking by mobile robots

    Get PDF
    This paper presents an approach for tracking multiple persons on a mobile robot with a combination of colour and thermal vision sensors, using several new techniques. First, an adaptive colour model is incorporated into the measurement model of the tracker. Second, a new approach for detecting occlusions is introduced, using a machine learning classifier for pairwise comparison of persons (classifying which one is in front of the other). Third, explicit occlusion handling is incorporated into the tracker. The paper presents a comprehensive, quantitative evaluation of the whole system and its different components using several real world data sets

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Robot control based on qualitative representation of human trajectories

    Get PDF
    A major challenge for future social robots is the high-level interpretation of human motion, and the consequent generation of appropriate robot actions. This paper describes some fundamental steps towards the real-time implementation of a system that allows a mobile robot to transform quantitative information about human trajectories (i.e. coordinates and speed) into qualitative concepts, and from these to generate appropriate control commands. The problem is formulated using a simple version of qualitative trajectory calculus, then solved using an inference engine based on fuzzy temporal logic and situation graph trees. Preliminary results are discussed and future directions of the current research are drawn

    Conceptual spatial representations for indoor mobile robots

    Get PDF
    We present an approach for creating conceptual representations of human-made indoor environments using mobile robots. The concepts refer to spatial and functional properties of typical indoor environments. Following findings in cognitive psychology, our model is composed of layers representing maps at different levels of abstraction. The complete system is integrated in a mobile robot endowed with laser and vision sensors for place and object recognition. The system also incorporates a linguistic framework that actively supports the map acquisition process, and which is used for situated dialogue. Finally, we discuss the capabilities of the integrated system

    Improved data association and occlusion handling for vision-based people tracking by mobile robots

    Get PDF
    This paper presents an approach for tracking multiple persons using a combination of colour and thermal vision sensors on a mobile robot. First, an adaptive colour model is incorporated into the measurement model of the tracker. Second, a new approach for detecting occlusions is introduced, using a machine learning classifier for pairwise comparison of persons (classifying which one is in front of the other). Third, explicit occlusion handling is then incorporated into the tracker

    Multi-target tracking using appearance models for identity maintenance

    Get PDF
    This thesis considers perception systems for urban environments. It focuses on the task of tracking dynamic objects and in particular on methods that can maintain the identities of targets through periods of ambiguity. Examples of such ambiguous situations occur when targets interact with each other, or when they are occluded by other objects or the environment. With the development of self driving cars, the push for autonomous delivery of packages, and an increasing use of technology for security, surveillance and public-safety applications, robust perception in crowded urban spaces is more important than ever before. A critical part of perception systems is the ability to understand the motion of objects in a scene. Tracking strategies that merge closely-spaced targets together into groups have been shown to offer improved robustness, but in doing so sacrifice the concept of target identity. Additionally, the primary sensor used for the tracking task may not provide the information required to reason about the identity of individual objects. There are three primary contributions in this work. The first is the development of 3D lidar tracking methods with improved ability to track closely-spaced targets and that can determine when target identities have become ambiguous. Secondly, this thesis defines appearance models suitable for the task of determining the identities of previously-observed targets, which may include the use of data from additional sensing modalities. The final contribution of this work is the combination of lidar tracking and appearance modelling, to enable the clarification of target identities in the presence of ambiguities caused by scene complexity. The algorithms presented in this work are validated on both carefully controlled and unconstrained datasets. The experiments show that in complex dynamic scenes with interacting targets, the proposed methods achieve significant improvements in tracking performance

    Perspectives of Nuclear Physics in Europe: NuPECC Long Range Plan 2010

    Get PDF
    The goal of this European Science Foundation Forward Look into the future of Nuclear Physics is to bring together the entire Nuclear Physics community in Europe to formulate a coherent plan of the best way to develop the field in the coming decade and beyond.<p></p> The primary aim of Nuclear Physics is to understand the origin, evolution, structure and phases of strongly interacting matter, which constitutes nearly 100% of the visible matter in the universe. This is an immensely important and challenging task that requires the concerted effort of scientists working in both theory and experiment, funding agencies, politicians and the public.<p></p> Nuclear Physics projects are often “big science”, which implies large investments and long lead times. They need careful forward planning and strong support from policy makers. This Forward Look provides an excellent tool to achieve this. It represents the outcome of detailed scrutiny by Europe’s leading experts and will help focus the views of the scientific community on the most promising directions in the field and create the basis for funding agencies to provide adequate support.<p></p> The current NuPECC Long Range Plan 2010 “Perspectives of Nuclear Physics in Europe” resulted from consultation with close to 6 000 scientists and engineers over a period of approximately one year. Its detailed recommendations are presented on the following pages. For the interested public, a short summary brochure has been produced to accompany the Forward Look.<p></p&gt
    corecore