46 research outputs found

    Bilateral Macro-Micro Teleoperation Using A Magnetic Actuation Mechanism

    Get PDF
    In recent years, there has been increasing interest in the advancement of microrobotic systems in micro-engineering, micro-fabrication, biological research and biomedical applications. Untethered magnetic-based microrobotic systems are one of the most widely developing groups of microrobotic systems that have been extensively explored for biological and biomedical micro-manipulations. These systems show promise in resolving problems related to on-board power supply limitations as well as mechanical contact sealing and lubrication. In this thesis, a high precision magnetic untethered microrobotic system is demonstrated for micro-handling tasks. A key aspect of the proposed platform concerns the integration of magnetic levitation technology and bilateral macro-micro teleoperation for human intervention to avoid imperceptible failures in poorly observed micro-domain environments. The developed platform has three basic subsystems: a magnetic untethered microrobotic system (MUMS), a haptic device, and a scaled bilateral teleoperation system. The MUMS produces and regulates a magnetic field for non-contact propelling of a microrobot. In order to achieve a controlled motion of the magnetically levitated microrobot, a mathematical force model of the magnetic propulsion mechanism is developed and used to design various control systems. In the workspace of 30 × 32 × 32 mm 3, both PID and LQG\LTR controllers perform similarly the position accuracy of 10 µ m in a vertical direction and 2 µ m in a horizontal motion. The MUMS is equipped with an eddy-current damper to enhance its inherent damping factor in the microrobot's horizontal motions. This paper deals with the modeling and analysis of an eddy-current damper that is formed by a conductive plate placed below the levitated microrobot to overcome inherent dynamical vibrations and improve motion precision. The modeling of eddy-current distribution in the conductive plate is investigated by solving the diffusion equation for vector magnetic potential, and an analytical expression for the horizontal damping force is presented and experimentally validated. It is demonstrated that eddy-current damping is a crucial technique for increasing the damping coefficient in a non-contact way and for improving levitation performance. The damping can be widely used in applications of magnetic actuation systems in micro-manipulation and micro-fabrication. To determine the position of the microrobot in a workspace, the MUMS uses high-accuracy laser sensors. However, laser positioning techniques can only be used in highly transparent environments. A novel technique based on real-time magnetic flux measurement has been proposed for the position estimation of the microrobot in case of laser beam blockage, whereby a combination of Hall-effect sensors is employed to find the microrobot's position in free motion by using the produced magnetic flux. In free motion, the microrobot tends to move toward the horizontally zero magnetic field gradient, Bmax location. As another key feature of the magnetic flux measurement, it was realized that the applied force from the environment to the microrobot can be estimated as linearly proportional to the distance of the microrobot from the Bmax location. The developed micro-domain force estimation method is verified experimentally with an accuracy of 1.27 µ N. A bilateral macro-micro teleoperation technique is employed in the MUMS for the telepresence of a human operator in the task environment. A gain-switching position-position teleoperation scheme is employed and a human operator controls the motion of the microrobot via a master manipulator for dexterous micro-manipulation tasks. The operator can sense a strong force during micro-domain tasks if the microrobot encounters a stiff environment, and the effect of hard contact is fed back to the operator's hand. The position-position method works for both free motion and hard contact. However, to enhance the feeling of a micro-domain environment in the human operator, the scaled force must be transferred to a human, thereby realizing a direct-force-reflection bilateral teleoperation. Additionally, a human-assisted virtual reality interface is developed to improve a human operator's skills in using the haptic-enabled platform, before carrying out an actual dexterous task.1 yea

    Demonstrating Optothermal Actuators for an Autonomous MEMS Microrobot

    Get PDF
    There are numerous applications for microrobots which are beneficial to the Air Force. However, the microrobotics field is still in its infancy, and will require extensive basic research before these applications can be fielded. The biggest hurdle to be solved, in order to create autonomous microrobots, is generating power for their actuator engines. Most present actuators require orders of magnitude more power than is presently available from micropower sources. To enable smaller microrobots, this research proposed a simplified power concept that eliminates the need for on-board power supplies and control circuitry by using actuators powered wirelessly from the environment. This research extended the basic knowledge of methods required to power Micro-Electro-Mechanical Systems (MEMS) devices and reduce MEMS microrobot size. This research demonstrated optothermal actuators designed for use in a wirelessly propelled autonomous MEMS microrobot, without the need of an onboard power supply, through the use of lasers to directly power micrometer scale silicon thermal actuators. Optothermal actuators, intended for use on a small MEMS microrobot, were modeled, designed, fabricated and tested, using the PolyMUMPs silicon-metal chip fabrication process. Prototype design of a MEMS polysilicon-based microrobot, using optothermal actuators, was designed, fabricated and tested. Each of its parts was demonstrated to provide actuation using energy from an external laser. The optothermal actuators provided 2 m of deflection to the microrobot drive shaft, with 60 mW of pulsed laser power. The results of these experiments demonstrated the validity of a new class of wireless silicon actuators for MEMS devices, which are not directly dependant on electrical power for actuation

    Cooperative Manipulation using a Magnetically Navigated Microrobot and a Micromanipulator

    Get PDF
    The cooperative manipulation of a common object using two or more manipulators is a popular research field in both industry and institutions. Different types of manipulators are used in cooperative manipulation for carrying heavy loads and delicate operations. Their applications range from macro to micro. In this thesis, we are interested in the development of a novel cooperative manipulator for manipulation tasks in a small workspace. The resultant cooperative manipulation system consists of a magnetically navigated microrobot (MNM) and a motorized micromanipulator (MM). The MNM is a small cylinder permanent magnet with 10mm diameter and 10mm height. The MM model is MP-285 which is a commercialized product. Here, the MNM is remotely controlled by an external magnetic field. The property of non-contact manipulation makes it a suitable choice for manipulation in a confined space. The cooperative manipulation system in this thesis used a master/slave mechanism as the central control strategy. The MM is the master side. The MNM is the slave side. During the manipulation process, the master manipulator MM is always position controlled, and it leads the object translation according to the kinematic constraints of the cooperative manipulation task. The MNM is position controlled at the beginning of the manipulation. In the translation stage, the MNM is switched to force control to maintain a successful holding of the object, and at the same time to prevent damaging the object by large holding force. Under the force control mode, the motion command to the MNM is calculated from a position-based impedance controller that enforces a relationship between the position of the MNM and the force. In this research, the accurate motion control of both manipulators are firstly studied before the cooperative manipulation is conducted. For the magnetic navigation system, the magnetic field in its workspace is modeled using an experimental measurement data-driven technique. The developed model is then used to develop a motion controller for navigating of a small cylindrical permanent magnet. The accuracy of motion control is reached at 20 µm in three degrees of freedom. For the motorized micromanipulator, a standard PID controller is designed to control its motion stage. The accuracy of the MM navigation is 0.8 µm. Since the MNM is remotely manipulated by an external magnetic field in a small space, it is challenging to install an on-board force sensor to measure the contact force between the MNM and the object. Therefore, a dual-axial o_-board force determination mechanism is proposed. The force is determined according to the linear relation between the minimum magnetic potential energy point and the real position of the MNM in the workspace. For convenience, the minimum magnetic potential energy point is defined as the Bmax in the literature. In this thesis, the dual-axial Bmax position is determined by measuring the magnetic ux density passing through the workspace using four Hall-effect sensors installed at the bottom of an iron pole-piece. The force model is experimentally validated in a horizontal plane with an accuracy of 2 µN in the x- and y- direction of horizontal planes. The proposed cooperative manipulator is then used to translate a hard-shell small object in two directions of a vertical plane, while one direction is constrained with a desired holding force. During the manipulation process, a digital camera is used to capture the real-time position of the MNM, the MM end-effector, and the manipulated object. To improve the performance of force control on the MNM, the proposed dual-axial force model is used to examine the compliant force control of the MNM while it is navigated to contact with uncertain environments. Here, uncertain refers to unknown environmental stiffness. An adaptive position-based impedance controller is implemented to estimate the stiffness of the environment and the contact force. The controller is examined by navigating the MNM to push a thin aluminum beam whose stiffness is unknown. The studied cooperative manipulation system has potential applications in biomedical microsurgery and microinjection. It should be clarified that the current system setup with 10mm ×10 mm MNM is not proper for this micromanipulation. In order to conduct research on microinjection, the size of the MNM and the end-effector of the MNM should be down-scaled to micrometers. In addition, the navigation accuracy of the MNM should also be improved to adopt the micromanipulation tasks

    Challenges in flexible microsystem manufacturing : fabrication, robotic assembly, control, and packaging.

    Get PDF
    Microsystems have been investigated with renewed interest for the last three decades because of the emerging development of microelectromechanical system (MEMS) technology and the advancement of nanotechnology. The applications of microrobots and distributed sensors have the potential to revolutionize micro and nano manufacturing and have other important health applications for drug delivery and minimal invasive surgery. A class of microrobots studied in this thesis, such as the Solid Articulated Four Axis Microrobot (sAFAM) are driven by MEMS actuators, transmissions, and end-effectors realized by 3-Dimensional MEMS assembly. Another class of microrobots studied here, like those competing in the annual IEEE Mobile Microrobot Challenge event (MMC) are untethered and driven by external fields, such as magnetic fields generated by a focused permanent magnet. A third class of microsystems studied in this thesis includes distributed MEMS pressure sensors for robotic skin applications that are manufactured in the cleanroom and packaged in our lab. In this thesis, we discuss typical challenges associated with the fabrication, robotic assembly and packaging of these microsystems. For sAFAM we discuss challenges arising from pick and place manipulation under microscopic closed-loop control, as well as bonding and attachment of silicon MEMS microparts. For MMC, we discuss challenges arising from cooperative manipulation of microparts that advance the capabilities of magnetic micro-agents. Custom microrobotic hardware configured and demonstrated during this research (such as the NeXus microassembly station) include micro-positioners, microscopes, and controllers driven via LabVIEW. Finally, we also discuss challenges arising in distributed sensor manufacturing. We describe sensor fabrication steps using clean-room techniques on Kapton flexible substrates, and present results of lamination, interconnection and testing of such sensors are presented

    Microrobots for wafer scale microfactory: design fabrication integration and control.

    Get PDF
    Future assembly technologies will involve higher automation levels, in order to satisfy increased micro scale or nano scale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to micro-electronics and MEMS industries, but less so in nanotechnology. With the bloom of nanotechnology ever since the 1990s, newly designed products with new materials, coatings and nanoparticles are gradually entering everyone’s life, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than with top-down robotic assembly. This is due to considerations of volume handling of large quantities of components, and the high cost associated to top-down manipulation with the required precision. However, the bottom-up manufacturing methods have certain limitations, such as components need to have pre-define shapes and surface coatings, and the number of assembly components is limited to very few. For example, in the case of self-assembly of nano-cubes with origami design, post-assembly manipulation of cubes in large quantities and cost-efficiency is still challenging. In this thesis, we envision a new paradigm for nano scale assembly, realized with the help of a wafer-scale microfactory containing large numbers of MEMS microrobots. These robots will work together to enhance the throughput of the factory, while their cost will be reduced when compared to conventional nano positioners. To fulfill the microfactory vision, numerous challenges related to design, power, control and nanoscale task completion by these microrobots must be overcome. In this work, we study three types of microrobots for the microfactory: a world’s first laser-driven micrometer-size locomotor called ChevBot,a stationary millimeter-size robotic arm, called Solid Articulated Four Axes Microrobot (sAFAM), and a light-powered centimeter-size crawler microrobot called SolarPede. The ChevBot can perform autonomous navigation and positioning on a dry surface with the guidance of a laser beam. The sAFAM has been designed to perform nano positioning in four degrees of freedom, and nanoscale tasks such as indentation, and manipulation. And the SolarPede serves as a mobile workspace or transporter in the microfactory environment

    Magnetic Levitation of Polymeric Photo-thermal Microgrippers

    Get PDF
    Precise manipulation of micro objects became great interest in engineering and science with the advancements in microengineering and microfabrication. In this thesis, a magnetically levitated microgripper is presented for microhandling tasks. The use of magnetic levitation for positioning reveals the problems associated with modeling of complex surface forces and the use of jointed parts or wires. The power required for the levitation of the microgripper is generated by an external drive unit that makes further minimization of the gripper possible. The gripper is made of a biocompatible material and can be activated remotely. These key features make the microgripper a great candidate for manipulation of micro components and biomanipulation. In order to achieve magnetic levitation of microrobots, the magnetic field generated by the magnetic levitation setup is simulated. The magnetic flux density in the air gap region is improved by the integration of permanent magnets and an additional electromagnet to the magnetic loop assembly. The levitation performance is evaluated with millimeter size permanent magnets. An eddy current damping method is implemented and the levitation accuracy is doubled by reducing the positioning error to 20.3 µm. For a MEMS-compatible microrobot design, the electrodeposition of Co-Ni-Mn-P magnetic thin films is demonstrated. Magnetic films are deposited on silicon substrate to form the magnetic portion of the microrobot. The electrodeposited films are extensively characterized. The relationship between the deposition parameters and structural properties is discussed leading to an understanding of the effect of deposition parameters on the magnetic properties. It is shown that both in-plane and out-of-plane magnetized films can be obtained using electrodeposition with slightly differentiated deposition parameters. The levitation of the electrodeposited magnetic samples shows a great promise toward the fabrication of levitating MEMS devices. The end-effector tool of the levitating microrobot is selected as a microgripper that can achieve various manipulation operations such as pulling, pushing, tapping, grasping and repositioning. The microgripper is designed based on a bent-beam actuation technique. The motion of the gripper fingers is achieved by thermal expansion through laser heat absorption. This technique provided non-contact actuation for the levitating microgripper. The analytical model of the displacement of the bent-beam actuator is developed. Different designs of microgripper are fabricated and thoroughly characterized experimentally and numerically. The two microgripper designs that lead to the maximum gripper deflection are adapted for the levitating microrobot. The experimental results show that the levitating microrobot can be positioned in a volume of 3 x 3 x 2 cm^3. The positioning error is measured as 34.3 µm and 13.2 µm when electrodeposited magnets and commercial permanent magnets are used, respectively. The gripper fingers are successfully operated on-the-fly by aligning a visible wavelength laser beam on the gripper. Micromanipulation of 100 µm diameter electrical wire, 125 µm diameter optical fiber and 1 mm diameter cable strip is demonstrated. The microgripper is also positioned in a closed chamber without sacrificing the positioning accuracy

    Power-Scavenging MEMS Robots

    Get PDF
    This thesis includes the design, modeling, and testing of novel, power-scavenging, biologically inspired MEMS microrobots. Over one hundred 500-μm and 990-μm microrobots with two, four, and eight wings were designed, fabricated, characterized. These microrobots constitute the smallest documented attempt at powered flight. Each microrobot wing is comprised of downward-deflecting, laser-powered thermal actuators made of gold and polysilicon; the microrobots were fabricated in PolyMUMPs® (Polysilicon Multi-User MEMS Processes). Characterization results of the microrobots illustrate how wing-tip deflection can be maximized by optimizing the gold-topolysilicon ratio as well as the dimensions of the actuator-wings. From these results, an optimum actuator-wing configuration was identified. It also was determined that the actuator-wing configuration with maximum deflection and surface area yet minimum mass had the greatest lift-to-weight ratio. Powered testing results showed that the microrobots successfully scavenged power from a remote 660-nm laser. These microrobots also demonstrated rapid downward flapping, but none achieved flight. The results show that the microrobots were too heavy and lacked sufficient wing surface area. It was determined that a successfully flying microrobot can be achieved by adding a robust, light-weight material to the optimum actuator-wing configuration—similar to insect wings. The ultimate objective of the flying microrobot project is an autonomous, fully maneuverable flying microrobot that is capable of sensing and acting upon a target. Such a microrobot would be capable of precise lethality, accurate battle-damage assessment, and successful penetration of otherwise inaccessible targets

    Workshop on "Control issues in the micro / nano - world".

    No full text
    International audienceDuring the last decade, the need of systems with micro/nanometers accuracy and fast dynamics has been growing rapidly. Such systems occur in applications including 1) micromanipulation of biological cells, 2) micrassembly of MEMS/MOEMS, 3) micro/nanosensors for environmental monitoring, 4) nanometer resolution imaging and metrology (AFM and SEM). The scale and requirement of such systems present a number of challenges to the control system design that will be addressed in this workshop. Working in the micro/nano-world involves displacements from nanometers to tens of microns. Because of this precision requirement, environmental conditions such as temperature, humidity, vibration, could generate noise and disturbance that are in the same range as the displacements of interest. The so-called smart materials, e.g., piezoceramics, magnetostrictive, shape memory, electroactive polymer, have been used for actuation or sensing in the micro/nano-world. They allow high resolution positioning as compared to hinges based systems. However, these materials exhibit hysteresis nonlinearity, and in the case of piezoelectric materials, drifts (called creep) in response to constant inputs In the case of oscillating micro/nano-structures (cantilever, tube), these nonlinearities and vibrations strongly decrease their performances. Many MEMS and NEMS applications involve gripping, feeding, or sorting, operations, where sensor feedback is necessary for their execution. Sensors that are readily available, e.g., interferometer, triangulation laser, and machine vision, are bulky and expensive. Sensors that are compact in size and convenient for packaging, e.g., strain gage, piezoceramic charge sensor, etc., have limited performance or robustness. To account for these difficulties, new control oriented techniques are emerging, such as[d the combination of two or more ‘packageable' sensors , the use of feedforward control technique which does not require sensors, and the use of robust controllers which account the sensor characteristics. The aim of this workshop is to provide a forum for specialists to present and overview the different approaches of control system design for the micro/nano-world and to initiate collaborations and joint projects

    Workshop on "Robotic assembly of 3D MEMS".

    No full text
    Proceedings of a workshop proposed in IEEE IROS'2007.The increase of MEMS' functionalities often requires the integration of various technologies used for mechanical, optical and electronic subsystems in order to achieve a unique system. These different technologies have usually process incompatibilities and the whole microsystem can not be obtained monolithically and then requires microassembly steps. Microassembly of MEMS based on micrometric components is one of the most promising approaches to achieve high-performance MEMS. Moreover, microassembly also permits to develop suitable MEMS packaging as well as 3D components although microfabrication technologies are usually able to create 2D and "2.5D" components. The study of microassembly methods is consequently a high stake for MEMS technologies growth. Two approaches are currently developped for microassembly: self-assembly and robotic microassembly. In the first one, the assembly is highly parallel but the efficiency and the flexibility still stay low. The robotic approach has the potential to reach precise and reliable assembly with high flexibility. The proposed workshop focuses on this second approach and will take a bearing of the corresponding microrobotic issues. Beyond the microfabrication technologies, performing MEMS microassembly requires, micromanipulation strategies, microworld dynamics and attachment technologies. The design and the fabrication of the microrobot end-effectors as well as the assembled micro-parts require the use of microfabrication technologies. Moreover new micromanipulation strategies are necessary to handle and position micro-parts with sufficiently high accuracy during assembly. The dynamic behaviour of micrometric objects has also to be studied and controlled. Finally, after positioning the micro-part, attachment technologies are necessary

    Automatic Microassembly System for tissue engineering- Assisted with top-view and force control

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore