2,087 research outputs found

    Processing, microstructure and mechanical properties of beta-type titanium porous structures made by additive manufacturing

    Get PDF
    Tissue engineering through the application of a low modulus, high strength format as a potential approach for increasing the durability of bone implants has been attracting significant attention. Titanium alloys are widely used for biomedical applications because of their low modulus, high biocompatibility, specific strength and corrosion resistance. These reasons affirm why titanium alloy is selected as the specific material to research. The development of low modulus biomaterials is considered to be an effective method to remove the mismatch between biomaterial implants and surrounding bone tissue, thereby reducing the risk of bone resorption. So far, Ti–24Nb–4Zr–8Sn alloy (abbreviated hereafter as Ti2448) is considered to be a biomedical titanium alloy with low modulus, and was invented for biomaterial application. However, the modulus of Ti2448 (42-50 GPa) is still higher than that of bone (1-30 GPa). A scaffold is an ideal structure for bone implants; such a structure can further reduce the modulus of an implant. This structure also has the desired effect of promoting bone in-growth. Additive manufacturing could prepare porous titanium parts with mechanical properties close to those of bone tissue. However, the properties of scaffolds are affected by manufacturing strategies and parameters such as the scanning speed, the input power, the layer thickness, the scanning strategy, the temperature of the platform and the hatch distance. Each of these parameters can affect a scaffold’s properties and performance in terms of density, hardness, super-elastic property, compressive and fatigue properties. For the Ti2448 alloy, all of these manufacturing parameters are still not clear enough to develop the perfect porous structure. This study will examine the performance of biomaterial Ti2448 scaffolds by tuning the main parameters of additive manufacturing (AM) systems through an analysis of the microstructure and the mechanical properties of the produced components

    Direct metal laser sintering of titanium alloys for biomedical applications

    Get PDF
    Published ThesisOngoing scientific progress shifts conventional methods to the much celebrated Additive Manufacturing (AM) due to its freedom of design, flexibility in feedstock and material optimization. It has shown that Direct Metal Laser sintering (DMLS), one of the AM technologies, is an attractive manufacturing route for the biomedical applications. Ti6Al4V is the most widely used titanium alloy for the implants. However, there still remain issues of relative low ductility of DMLS Ti6Al4V and infections after implantation which have triggered the current research into producing implants of high ductility with antibacterial properties by DMLS, while establishing a body of knowledge about the relationship between the laser-matter interaction, microstructure, and mechanical properties. The type of material used in biomedical applications depends on specific implant applications and different types of implant need different mechanical properties. The current study is designed to investigate DMLS lattice structures from traditional Ti alloy such as T6Al4V ELI and the possibility of producing novel alloys by in-situ alloying for DMLS process. Learning from nature, it can be understood that cellular structures would be more preferable for biomedical implants than dense solid structures’ since the architecture of bone tissues in the human body are not completely dense and solid. Cellular structures of different nodes and strut sizes were produced and mechanically investigated to mimic the anisotropic porous nature of bones. A finite element analysis (FEA) was conducted to determine the applicability of graded/gradient implant based on each patient requirement. From the FEA it was hypothesized that implant design with cellular structures with relative low Elastic modulus would bridge the Elastic modulus gradient between dense solid metallic implants and the porous bones. An advanced lightweight mandible model was proposed whereby a damaged mandible could be replaced with a graded material based on the functional requirements of the damaged part. Mixing different elemental powders for in-situ alloying by DMLS would definitely increase the material pallet for AM. Understanding the effects of the parameters on DMLS process is paramount to gaining full control over density, microstructure and the mechanical properties of the DMLS parts. Only a careful combination of the process parameters would result in optimum process parameters for each type of powder. A wide range of process parameters were investigated to gain in-depth knowledge into the interaction between the laser beam and the powder bed by in-situ alloying powders with vastly different melting points and similar particle size distribution (45 ÎŒm). Due to difference in thermo-physical properties between the powders (Ti6Al4V, Cu, Mo, Ti), sintered materials were inhomogenous. Rescanning was employed but there was no significant change in the volume fraction of the unmelted Mo particles in the Ti15Mo alloy matrix. Due to the inherent high rate of heating and cooling simultaneously of the DMLS process, martensitic phase was found in the as-built Ti15Mo and Ti6Al4V–1at.%Cu samples. The martensitic properties reduce the ductility of the as-built samples significantly. Optimum process parameters were determined for both molybdenum-bearing titanium alloy (85% Ti and 15% Mo) and copper-bearing titanium alloy (Ti6Al4V and 1at.%Cu). Successful manufacturing of non-porous samples was done. In-situ alloying Ti6Al4V+1%Cu was successful and therefore there are promising ways to manufacture materials with embedded antibacterial properties. Incorporating copper into the bulk material by in-situ alloying would prevent the fall-off of antibacterial deposition coatings used in the past, since the material matrix (implant) would be antibacterial agent. The mechanical properties investigations with mini-samples presented ductility values below what was recommended for biomedical materials. It was concluded that finer Mo particles have to be chosen for in-situ alloying Ti15Mo for producing biomedical objects. Future work have to be done with elaboration of heat treatment procedures for higher ductility for structural bearing implants in a single step by the DMLS process. The results obtained developed new knowledge that is important for understanding the in situ alloying process during DMLS and new material production. The illustrated effects of process parameters on the properties of the synthesized material would be paramount for advanced implants with unique properties

    Clinical, industrial, and research perspectives on powder bed fusion additively manufactured metal implants

    Get PDF
    For over ten years, metallic skeletal endoprostheses have been produced in select cases by additive manufacturing (AM) and increasing awareness is driving demand for wider access to the technology. This review brings together key stakeholder perspectives on the translation of AM research; clinical application, ongoing research in the field of powder bed fusion, and the current regulatory framework. The current clinical use of AM is assessed, both on a mass-manufactured scale and bespoke application for patient specific implants. To illuminate the benefits to clinicians, a case study on the provision of custom cranioplasty is provided based on prosthetist testimony. Current progress in research is discussed, with immediate gains to be made through increased design freedom described at both meso- and macro-scale, as well as long-term goals in alloy development including bioactive materials. In all cases, focus is given to specific clinical challenges such as stress shielding and osseointegration. Outstanding challenges in industrialisation of AM are openly raised, with possible solutions assessed. Finally, overarching context is given with a review of the regulatory framework involved in translating AM implants, with particular emphasis placed on customisation within an orthopaedic remit. A viable future for AM of metal implants is presented, and it is suggested that continuing collaboration between all stakeholders will enable acceleration of the translation process

    Additive manufacturing techniques and their biomedical applications

    Get PDF
    Additive manufacturing (AM), also known as three-dimensional (3D) printing, is gaining increasing attention in medical fields, especially in dental and implant areas. Because AM technologies have many advantages in comparison with traditional technologies, such as the ability to manufacture patient-specific complex components, high material utilization, support of tissue growth, and a unique customized service for individual patients, AM is considered to have a large potential market in medical fields. This brief review presents the recent progress of 3D-printed ­biomedical materials for bone applications, mainly for metallic materials, including multifunctional alloys with high strength and low Young’s modulus, shape memory alloys, and their 3D fabrication by AM technologies. It describes the potential of 3D printing techniques in precision medicine and community health

    Titanium based bone implants production using laser powder bed fusion technology

    Get PDF
    Additive manufacturing (AM) enables fully dense biomimetic implants in the designed geometries from preferred materials such as titanium and its alloys. Titanium aluminum vanadium (Ti6Al4V) is one of the pioneer metal alloys for bone implant applications, however, the reasons for eliminating the toxic effects of Ti6Al4V and maintaining adequate mechanical strength have increased the potential of commercially pure titanium (cp-Ti) to be used in bone implants. This literature review aims to evaluate the production of cp-Ti and Ti6Al4V biomedical implants with laser powder bed fusion (L-PBF) technology, which has a very high level of technological matureness and industrialization level. The optimization of L-PBF manufacturing parameters and post-processing techniques affect the obtained microstructure leading to various mechanical, corrosion and biological behaviors of the manufactured titanium. All of the features are considered in the light of specifications and needs of bone implant applications. The most critical disadvantages of the L-PBF technology, such as residual stresses and leading deformations are introduced and the potential solutions are discussed. Moreover, the manufacturability of porous bone implants that causes benefit and harm in L-PBF applications are assessed.Peer ReviewedObjectius de Desenvolupament Sostenible::3 - Salut i BenestarPostprint (published version

    Development of AM technologies for metals in the sector of medical implants

    Get PDF
    Additive manufacturing (AM) processes have undergone significant progress in recent years, having been implemented in sectors as diverse as automotive, aerospace, electrical component manufacturing, etc. In the medical sector, different devices are printed, such as implants, surgical guides, scaffolds, tissue engineering, etc. Although nowadays some implants are made of plastics or ceramics, metals have been traditionally employed in their manufacture. However, metallic implants obtained by traditional methods such as machining have the drawbacks that they are manufactured in standard sizes, and that it is difficult to obtain porous structures that favor fixation of the prostheses by means of osseointegration. The present paper presents an overview of the use of AM technologies to manufacture metallic implants. First, the different technologies used for metals are presented, focusing on the main advantages and drawbacks of each one of them. Considered technologies are binder jetting (BJ), selective laser melting (SLM), electron beam melting (EBM), direct energy deposition (DED), and material extrusion by fused filament fabrication (FFF) with metal filled polymers. Then, different metals used in the medical sector are listed, and their properties are summarized, with the focus on Ti and CoCr alloys. They are divided into two groups, namely ferrous and non-ferrous alloys. Finally, the state-of-art about the manufacture of metallic implants with AM technologies is summarized. The present paper will help to explain the latest progress in the application of AM processes to the manufacture of implantsPostprint (published version

    Direct Metal Laser Sintering of Titanium implant with Tailored structure and Mechanical Properties

    Get PDF
    Direct Metal Laser Sintering has attracted much attention over the last decade for producing complex parts additively based on digital models. The capability and reliability of this process has stimulated new design concepts and has widened the manufacturing perspective of product customisation. This research work is designed to gain a deep understanding of laser sintering processing parameters, the corresponding microstructures and the mechanical properties. The main purpose is to have a body of fundamental knowledge about the laser and titanium powder material interactions, thus establishing the factors that influence the process-structure-properties relationships of the Direct Metal Laser Sintering process. Finally, a route for manufacturing customised craniofacial implants was described. This is to evaluate the DMLS processing capabilities in medical areas, particularly those parts having porous and lattice design structures. The interaction between a laser beam and the powder bed creates a distinctive structure; a ball shaped (blob) consists of solid and porous regions. All the blobs have the same shape and morphology which may well suggest that there is a tendency for the powder particles to form a spherical droplet prior to a movingless laser beam. Surrounding the melted core is a sintered region of partially melted powder particles where the powder particles were fused together to form inter-particle necks. There is a linear relation between size, weight and density of a blob and the laser power. The surface temperature obtained exceeds the melting and vaporization temperature of the titanium and this creates a hole on the top part of a blob as a result of a massive temperature rise. Laser power of 140W gives a consistent structure and hardness in a blob. Metallographic analyses of a blob’s cross-section show an α+ÎČ structure with prior-beta grains. The morphology of the lamellar structure consisted of acicular needles with a basket-weave pattern. The pores were characterised as having flat and spherical features with the size ranging from 2”m to 6”m. The micro-porosity observed may be associated with shrinkage which occurs during solidification or with the presence of entrapped gases from the atmosphere or argon gas from the shrouding environment Laser power and scan speed are the two most crucial factor controlling the laser-powder interactions. Result shows that laser power is capable of widening the processing parameters particularly the scan speed. Increased laser power causes more powder to melt thus creating a bigger melt pool. Contrary to this, increasing the scan speed reduces the interaction time thus a smaller amount of powder melts. The right combination of these two parameters results in inducing an appropriate exposure time where continuously scanned tracks can be formed. Most of the parts were successfully built using a specific volume energy density of 50Jmm⁻³, which was considered to be the optimum processing parameter for this research work. The ideal laser-material interaction time was calculated at 0.0008secs. The microstructural analysis revealed a fully lamellar structure with acicular morphology. XRD analysis confirmed the presence of α’ martensite, which explains the thermal history of a high isothermal condition and rapid cooling. The cross section of a solid part exhibited an acicular, needle-like structure with a herring bone pattern, parallel to building direction, due to directional solidification. The microstructure had a high tensile strength but with low ductility. It is also worth mentioning that a slight change in scan speed, with the intention of providing more energy density to the powder, may cause instability in the melt pool and cause deterioration in the mechanical properties. It is therefore confirmed that there is an upper limit and allowable processing window where a good balance of tensile strength and hardness in a DMLS part is achievable. A framework prior to an implant’s fabrication was established and the associated design and manufacturing software are reported. The processing route required software like MIMICS and MAGICS to manipulate the medical images and design data and equitable skills must be acquired to handle the machine in order to successfully fabricate the desired parts. Employing MAGICS new lattice function proved to be more efficient, saving time compared to a manual procedure, especially when dealing with large medical data manipulation. In conclusion, the proposed method from this study is capable of producing a customised part with the highest degree of design complexity compared with other conventional manufacturing methods. This has proved to be very suitable for manufacturing titanium medical implants, particularly craniofacial implants which require a customised and lightweight structure and at the same time still provide good mechanical propertie

    Additive Manufacturing Research and Applications

    Get PDF
    This Special Issue book covers a wide scope in the research field of 3D-printing, including: the use of 3D printing in system design; AM with binding jetting; powder manufacturing technologies in 3D printing; fatigue performance of additively manufactured metals, such as the Ti-6Al-4V alloy; 3D-printing methods with metallic powder and a laser-based 3D printer; 3D-printed custom-made implants; laser-directed energy deposition (LDED) process of TiC-TMC coatings; Wire Arc Additive Manufacturing; cranial implant fabrication without supports in electron beam melting (EBM) additive manufacturing; the influence of material properties and characteristics in laser powder bed fusion; Design For Additive Manufacturing (DFAM); porosity evaluation of additively manufactured parts; fabrication of coatings by laser additive manufacturing; laser powder bed fusion additive manufacturing; plasma metal deposition (PMD); as-metal-arc (GMA) additive manufacturing process; and spreading process maps for powder-bed additive manufacturing derived from physics model-based machine learning

    Failure Analysis of Biometals

    Get PDF
    Metallic biomaterials (biometals) are widely used for the manufacture of medical implants, ranging from load-bearing orthopaedic prostheses to dental and cardiovascular implants, because of their favourable combination of properties, including high strength, fracture toughness, biocompatibility, and wear and corrosion resistance. Owing to the significant consequences of implant material failure/degradation, in terms of both personal and financial burden, failure analysis of biometals has always been of paramount importance in order to understand the failure mechanisms and implement suitable solutions with the aim to improve the longevity of implants in the body. Failure Analysis of Biometals presents some of the latest developments and findings in this area. This includes a great range of common metallic biomaterials (Ti alloys, CoCrMo alloys, Mg alloys, and NiTi alloys) and their associated failure mechanisms (corrosion, fatigue, fracture, and fretting wear) that commonly occur in medical implants and surgical instruments
    • 

    corecore