20,642 research outputs found

    Constructions of Large Graphs on Surfaces

    Full text link
    We consider the degree/diameter problem for graphs embedded in a surface, namely, given a surface Σ\Sigma and integers Δ\Delta and kk, determine the maximum order N(Δ,k,Σ)N(\Delta,k,\Sigma) of a graph embeddable in Σ\Sigma with maximum degree Δ\Delta and diameter kk. We introduce a number of constructions which produce many new largest known planar and toroidal graphs. We record all these graphs in the available tables of largest known graphs. Given a surface Σ\Sigma of Euler genus gg and an odd diameter kk, the current best asymptotic lower bound for N(Δ,k,Σ)N(\Delta,k,\Sigma) is given by 38gΔk/2.\sqrt{\frac{3}{8}g}\Delta^{\lfloor k/2\rfloor}. Our constructions produce new graphs of order \begin{cases}6\Delta^{\lfloor k/2\rfloor}& \text{if $\Sigma$ is the Klein bottle}\\ \(\frac{7}{2}+\sqrt{6g+\frac{1}{4}}\)\Delta^{\lfloor k/2\rfloor}& \text{otherwise,}\end{cases} thus improving the former value by a factor of 4.Comment: 15 pages, 7 figure

    The degree/diameter problem in maximal planar bipartite graphs

    Get PDF
    The (Δ,D)(Δ,D) (degree/diameter) problem consists of finding the largest possible number of vertices nn among all the graphs with maximum degree ΔΔ and diameter DD. We consider the (Δ,D)(Δ,D) problem for maximal planar bipartite graphs, that is, simple planar graphs in which every face is a quadrangle. We obtain that for the (Δ,2)(Δ,2) problem, the number of vertices is n=Δ+2n=Δ+2; and for the (Δ,3)(Δ,3) problem, n=3Δ−1n=3Δ−1 if ΔΔ is odd and n=3Δ−2n=3Δ−2 if ΔΔ is even. Then, we prove that, for the general case of the (Δ,D)(Δ,D) problem, an upper bound on nn is approximately 3(2D+1)(Δ−2)⌊D/2⌋3(2D+1)(Δ−2)⌊D/2⌋, and another one is C(Δ−2)⌊D/2⌋C(Δ−2)⌊D/2⌋ if Δ≥DΔ≥D and CC is a sufficiently large constant. Our upper bounds improve for our kind of graphs the one given by Fellows, Hell and Seyffarth for general planar graphs. We also give a lower bound on nn for maximal planar bipartite graphs, which is approximately (Δ−2)k(Δ−2)k if D=2kD=2k, and 3(Δ−3)k3(Δ−3)k if D=2k+1D=2k+1, for ΔΔ and DD sufficiently large in both cases.Peer ReviewedPostprint (published version

    On quadratic orbital networks

    Full text link
    These are some informal remarks on quadratic orbital networks over finite fields. We discuss connectivity, Euler characteristic, number of cliques, planarity, diameter and inductive dimension. We find a non-trivial disconnected graph for d=3. We prove that for d=1 generators, the Euler characteristic is always non-negative and for d=2 and large enough p the Euler characteristic is negative. While for d=1, all networks are planar, we suspect that for d larger or equal to 2 and large enough prime p, all networks are non-planar. As a consequence on bounds for the number of complete sub graphs of a fixed dimension, the inductive dimension of all these networks goes 1 as p goes to infinity.Comment: 13 figures 15 page

    On the diameter of random planar graphs

    Get PDF
    We show that the diameter D(G_n) of a random labelled connected planar graph with n vertices is equal to n^{1/4+o(1)}, in probability. More precisely there exists a constant c>0 such that the probability that D(G_n) lies in the interval (n^{1/4-\epsilon},n^{1/4+\epsilon}) is greater than 1-\exp(-n^{c\epsilon}) for {\epsilon} small enough and n>n_0(\epsilon). We prove similar statements for 2-connected and 3-connected planar graphs and maps.Comment: 24 pages, 7 figure

    Approximating the Diameter of Planar Graphs in Near Linear Time

    Get PDF
    We present a (1+ϵ)(1+\epsilon)-approximation algorithm running in O(f(ϵ)nlog4n)O(f(\epsilon)\cdot n \log^4 n) time for finding the diameter of an undirected planar graph with non-negative edge lengths

    Approximation Algorithms for Polynomial-Expansion and Low-Density Graphs

    Full text link
    We study the family of intersection graphs of low density objects in low dimensional Euclidean space. This family is quite general, and includes planar graphs. We prove that such graphs have small separators. Next, we present efficient (1+ε)(1+\varepsilon)-approximation algorithms for these graphs, for Independent Set, Set Cover, and Dominating Set problems, among others. We also prove corresponding hardness of approximation for some of these optimization problems, providing a characterization of their intractability in terms of density

    Untangling polygons and graphs

    Full text link
    Untangling is a process in which some vertices of a planar graph are moved to obtain a straight-line plane drawing. The aim is to move as few vertices as possible. We present an algorithm that untangles the cycle graph C_n while keeping at least \Omega(n^{2/3}) vertices fixed. For any graph G, we also present an upper bound on the number of fixed vertices in the worst case. The bound is a function of the number of vertices, maximum degree and diameter of G. One of its consequences is the upper bound O((n log n)^{2/3}) for all 3-vertex-connected planar graphs.Comment: 11 pages, 3 figure

    On the maximum order of graphs embedded in surfaces

    Get PDF
    The maximum number of vertices in a graph of maximum degree Δ3\Delta\ge 3 and fixed diameter k2k\ge 2 is upper bounded by (1+o(1))(Δ1)k(1+o(1))(\Delta-1)^{k}. If we restrict our graphs to certain classes, better upper bounds are known. For instance, for the class of trees there is an upper bound of (2+o(1))(Δ1)k/2(2+o(1))(\Delta-1)^{\lfloor k/2\rfloor} for a fixed kk. The main result of this paper is that graphs embedded in surfaces of bounded Euler genus gg behave like trees, in the sense that, for large Δ\Delta, such graphs have orders bounded from above by begin{cases} c(g+1)(\Delta-1)^{\lfloor k/2\rfloor} & \text{if $k$ is even} c(g^{3/2}+1)(\Delta-1)^{\lfloor k/2\rfloor} & \text{if $k$ is odd}, \{cases} where cc is an absolute constant. This result represents a qualitative improvement over all previous results, even for planar graphs of odd diameter kk. With respect to lower bounds, we construct graphs of Euler genus gg, odd diameter kk, and order c(g+1)(Δ1)k/2c(\sqrt{g}+1)(\Delta-1)^{\lfloor k/2\rfloor} for some absolute constant c>0c>0. Our results answer in the negative a question of Miller and \v{S}ir\'a\v{n} (2005).Comment: 13 pages, 3 figure
    corecore