534 research outputs found

    Largest Digraphs Contained IN All N-tournaments

    Get PDF
    Let f(n) (resp. g(n)) be the largest m such that there is a digraph (resp. a spanning weakly connected digraph) on n-vertices and m edges which is a subgraph of every tournament on n-vertices. We prove that n log2 n--cxn>=f(n) ~_g(n) ~- n log ~ n--c..n loglog n

    Switching Reconstruction of Digraphs

    Get PDF
    Switching about a vertex in a digraph means to reverse the direction of every edge incident with that vertex. Bondy and Mercier introduced the problem of whether a digraph can be reconstructed up to isomorphism from the multiset of isomorphism types of digraphs obtained by switching about each vertex. Since the largest known non-reconstructible oriented graphs have 8 vertices, it is natural to ask whether there are any larger non-reconstructible graphs. In this paper we continue the investigation of this question. We find that there are exactly 44 non-reconstructible oriented graphs whose underlying undirected graphs have maximum degree at most 2. We also determine the full set of switching-stable oriented graphs, which are those graphs for which all switchings return a digraph isomorphic to the original

    Hitting minors, subdivisions, and immersions in tournaments

    Full text link
    The Erd\H{o}s-P\'osa property relates parameters of covering and packing of combinatorial structures and has been mostly studied in the setting of undirected graphs. In this note, we use results of Chudnovsky, Fradkin, Kim, and Seymour to show that, for every directed graph HH (resp. strongly-connected directed graph HH), the class of directed graphs that contain HH as a strong minor (resp. butterfly minor, topological minor) has the vertex-Erd\H{o}s-P\'osa property in the class of tournaments. We also prove that if HH is a strongly-connected directed graph, the class of directed graphs containing HH as an immersion has the edge-Erd\H{o}s-P\'osa property in the class of tournaments.Comment: Accepted to Discrete Mathematics & Theoretical Computer Science. Difference with the previous version: use of the DMTCS article class. For a version with hyperlinks see the previous versio
    • …
    corecore