2,648 research outputs found

    Creation and Growth of Components in a Random Hypergraph Process

    Full text link
    Denote by an \ell-component a connected bb-uniform hypergraph with kk edges and k(b1)k(b-1) - \ell vertices. We prove that the expected number of creations of \ell-component during a random hypergraph process tends to 1 as \ell and bb tend to \infty with the total number of vertices nn such that =o(nb3)\ell = o(\sqrt[3]{\frac{n}{b}}). Under the same conditions, we also show that the expected number of vertices that ever belong to an \ell-component is approximately 121/3(b1)1/31/3n2/312^{1/3} (b-1)^{1/3} \ell^{1/3} n^{2/3}. As an immediate consequence, it follows that with high probability the largest \ell-component during the process is of size O((b1)1/31/3n2/3)O((b-1)^{1/3} \ell^{1/3} n^{2/3}). Our results give insight about the size of giant components inside the phase transition of random hypergraphs.Comment: R\'{e}sum\'{e} \'{e}tend

    Covering graphs by monochromatic trees and Helly-type results for hypergraphs

    Full text link
    How many monochromatic paths, cycles or general trees does one need to cover all vertices of a given rr-edge-coloured graph GG? These problems were introduced in the 1960s and were intensively studied by various researchers over the last 50 years. In this paper, we establish a connection between this problem and the following natural Helly-type question in hypergraphs. Roughly speaking, this question asks for the maximum number of vertices needed to cover all the edges of a hypergraph HH if it is known that any collection of a few edges of HH has a small cover. We obtain quite accurate bounds for the hypergraph problem and use them to give some unexpected answers to several questions about covering graphs by monochromatic trees raised and studied by Bal and DeBiasio, Kohayakawa, Mota and Schacht, Lang and Lo, and Gir\~ao, Letzter and Sahasrabudhe.Comment: 20 pages including references plus 2 pages of an Appendi

    Relaxation-Based Coarsening for Multilevel Hypergraph Partitioning

    Get PDF
    Multilevel partitioning methods that are inspired by principles of multiscaling are the most powerful practical hypergraph partitioning solvers. Hypergraph partitioning has many applications in disciplines ranging from scientific computing to data science. In this paper we introduce the concept of algebraic distance on hypergraphs and demonstrate its use as an algorithmic component in the coarsening stage of multilevel hypergraph partitioning solvers. The algebraic distance is a vertex distance measure that extends hyperedge weights for capturing the local connectivity of vertices which is critical for hypergraph coarsening schemes. The practical effectiveness of the proposed measure and corresponding coarsening scheme is demonstrated through extensive computational experiments on a diverse set of problems. Finally, we propose a benchmark of hypergraph partitioning problems to compare the quality of other solvers

    Counting connected hypergraphs via the probabilistic method

    Full text link
    In 1990 Bender, Canfield and McKay gave an asymptotic formula for the number of connected graphs on [n][n] with mm edges, whenever nn and the nullity mn+1m-n+1 tend to infinity. Asymptotic formulae for the number of connected rr-uniform hypergraphs on [n][n] with mm edges and so nullity t=(r1)mn+1t=(r-1)m-n+1 were proved by Karo\'nski and \L uczak for the case t=o(logn/loglogn)t=o(\log n/\log\log n), and Behrisch, Coja-Oghlan and Kang for t=Θ(n)t=\Theta(n). Here we prove such a formula for any r3r\ge 3 fixed, and any t=t(n)t=t(n) satisfying t=o(n)t=o(n) and tt\to\infty as nn\to\infty. This leaves open only the (much simpler) case t/nt/n\to\infty, which we will consider in future work. ( arXiv:1511.04739 ) Our approach is probabilistic. Let Hn,prH^r_{n,p} denote the random rr-uniform hypergraph on [n][n] in which each edge is present independently with probability pp. Let L1L_1 and M1M_1 be the numbers of vertices and edges in the largest component of Hn,prH^r_{n,p}. We prove a local limit theorem giving an asymptotic formula for the probability that L1L_1 and M1M_1 take any given pair of values within the `typical' range, for any p=p(n)p=p(n) in the supercritical regime, i.e., when p=p(n)=(1+ϵ(n))(r2)!nr+1p=p(n)=(1+\epsilon(n))(r-2)!n^{-r+1} where ϵ3n\epsilon^3n\to\infty and ϵ0\epsilon\to 0; our enumerative result then follows easily. Taking as a starting point the recent joint central limit theorem for L1L_1 and M1M_1, we use smoothing techniques to show that `nearby' pairs of values arise with about the same probability, leading to the local limit theorem. Behrisch et al used similar ideas in a very different way, that does not seem to work in our setting. Independently, Sato and Wormald have recently proved the special case r=3r=3, with an additional restriction on tt. They use complementary, more enumerative methods, which seem to have a more limited scope, but to give additional information when they do work.Comment: Expanded; asymptotics clarified - no significant mathematical changes. 67 pages (including appendix
    corecore