2,324 research outputs found

    Constructions of Large Graphs on Surfaces

    Full text link
    We consider the degree/diameter problem for graphs embedded in a surface, namely, given a surface Σ\Sigma and integers Δ\Delta and kk, determine the maximum order N(Δ,k,Σ)N(\Delta,k,\Sigma) of a graph embeddable in Σ\Sigma with maximum degree Δ\Delta and diameter kk. We introduce a number of constructions which produce many new largest known planar and toroidal graphs. We record all these graphs in the available tables of largest known graphs. Given a surface Σ\Sigma of Euler genus gg and an odd diameter kk, the current best asymptotic lower bound for N(Δ,k,Σ)N(\Delta,k,\Sigma) is given by 38gΔ⌊k/2⌋.\sqrt{\frac{3}{8}g}\Delta^{\lfloor k/2\rfloor}. Our constructions produce new graphs of order \begin{cases}6\Delta^{\lfloor k/2\rfloor}& \text{if $\Sigma$ is the Klein bottle}\\ \(\frac{7}{2}+\sqrt{6g+\frac{1}{4}}\)\Delta^{\lfloor k/2\rfloor}& \text{otherwise,}\end{cases} thus improving the former value by a factor of 4.Comment: 15 pages, 7 figure

    Resolving sets for Johnson and Kneser graphs

    Get PDF
    A set of vertices SS in a graph GG is a {\em resolving set} for GG if, for any two vertices u,vu,v, there exists x∈Sx\in S such that the distances d(u,x)≠d(v,x)d(u,x) \neq d(v,x). In this paper, we consider the Johnson graphs J(n,k)J(n,k) and Kneser graphs K(n,k)K(n,k), and obtain various constructions of resolving sets for these graphs. As well as general constructions, we show that various interesting combinatorial objects can be used to obtain resolving sets in these graphs, including (for Johnson graphs) projective planes and symmetric designs, as well as (for Kneser graphs) partial geometries, Hadamard matrices, Steiner systems and toroidal grids.Comment: 23 pages, 2 figures, 1 tabl

    Some Exact Results on Bond Percolation

    Full text link
    We present some exact results on bond percolation. We derive a relation that specifies the consequences for bond percolation quantities of replacing each bond of a lattice Λ\Lambda by ℓ\ell bonds connecting the same adjacent vertices, thereby yielding the lattice Λℓ\Lambda_\ell. This relation is used to calculate the bond percolation threshold on Λℓ\Lambda_\ell. We show that this bond inflation leaves the universality class of the percolation transition invariant on a lattice of dimensionality d≥2d \ge 2 but changes it on a one-dimensional lattice and quasi-one-dimensional infinite-length strips. We also present analytic expressions for the average cluster number per vertex and correlation length for the bond percolation problem on the N→∞N \to \infty limits of several families of NN-vertex graphs. Finally, we explore the effect of bond vacancies on families of graphs with the property of bounded diameter as N→∞N \to \infty.Comment: 33 pages latex 3 figure

    Spectrum of the Laplace-Beltrami Operator and the Phase Structure of Causal Dynamical Triangulation

    Full text link
    We propose a new method to characterize the different phases observed in the non-perturbative numerical approach to quantum gravity known as Causal Dynamical Triangulation. The method is based on the analysis of the eigenvalues and the eigenvectors of the Laplace-Beltrami operator computed on the triangulations: it generalizes previous works based on the analysis of diffusive processes and proves capable of providing more detailed information on the geometric properties of the triangulations. In particular, we apply the method to the analysis of spatial slices, showing that the different phases can be characterized by a new order parameter related to the presence or absence of a gap in the spectrum of the Laplace-Beltrami operator, and deriving an effective dimensionality of the slices at the different scales. We also propose quantities derived from the spectrum that could be used to monitor the running to the continuum limit around a suitable critical point in the phase diagram, if any is found.Comment: 21 pages, 26 figures, 2 table

    Phase diagram of the chromatic polynomial on a torus

    Get PDF
    We study the zero-temperature partition function of the Potts antiferromagnet (i.e., the chromatic polynomial) on a torus using a transfer-matrix approach. We consider square- and triangular-lattice strips with fixed width L, arbitrary length N, and fully periodic boundary conditions. On the mathematical side, we obtain exact expressions for the chromatic polynomial of widths L=5,6,7 for the square and triangular lattices. On the physical side, we obtain the exact ``phase diagrams'' for these strips of width L and infinite length, and from these results we extract useful information about the infinite-volume phase diagram of this model: in particular, the number and position of the different phases.Comment: 72 pages (LaTeX2e). Includes tex file, three sty files, and 26 Postscript figures. Also included are Mathematica files transfer6_sq.m and transfer6_tri.m. Final version to appear in Nucl. Phys.
    • …
    corecore