2,145 research outputs found

    Uniform Infinite Planar Triangulations

    Full text link
    The existence of the weak limit as n --> infinity of the uniform measure on rooted triangulations of the sphere with n vertices is proved. Some properties of the limit are studied. In particular, the limit is a probability measure on random triangulations of the plane.Comment: 36 pages, 4 figures; Journal revised versio

    Canonical ordering for graphs on the cylinder, with applications to periodic straight-line drawings on the flat cylinder and torus

    Get PDF
    We extend the notion of canonical ordering (initially developed for planar triangulations and 3-connected planar maps) to cylindric (essentially simple) triangulations and more generally to cylindric (essentially internally) 33-connected maps. This allows us to extend the incremental straight-line drawing algorithm of de Fraysseix, Pach and Pollack (in the triangulated case) and of Kant (in the 33-connected case) to this setting. Precisely, for any cylindric essentially internally 33-connected map GG with nn vertices, we can obtain in linear time a periodic (in xx) straight-line drawing of GG that is crossing-free and internally (weakly) convex, on a regular grid Z/wZ×[0..h]\mathbb{Z}/w\mathbb{Z}\times[0..h], with w≤2nw\leq 2n and h≤n(2d+1)h\leq n(2d+1), where dd is the face-distance between the two boundaries. This also yields an efficient periodic drawing algorithm for graphs on the torus. Precisely, for any essentially 33-connected map GG on the torus (i.e., 33-connected in the periodic representation) with nn vertices, we can compute in linear time a periodic straight-line drawing of GG that is crossing-free and (weakly) convex, on a periodic regular grid Z/wZ×Z/hZ\mathbb{Z}/w\mathbb{Z}\times\mathbb{Z}/h\mathbb{Z}, with w≤2nw\leq 2n and h≤1+2n(c+1)h\leq 1+2n(c+1), where cc is the face-width of GG. Since c≤2nc\leq\sqrt{2n}, the grid area is O(n5/2)O(n^{5/2}).Comment: 37 page

    Joint scaling limit of site percolation on random triangulations in the metric and peanosphere sense

    Full text link
    Recent works have shown that random triangulations decorated by critical (p=1/2p=1/2) Bernoulli site percolation converge in the scaling limit to a 8/3\sqrt{8/3}-Liouville quantum gravity (LQG) surface (equivalently, a Brownian surface) decorated by SLE6_6 in two different ways: 1. The triangulation, viewed as a curve-decorated metric measure space equipped with its graph distance, the counting measure on vertices, and a single percolation interface converges with respect to a version of the Gromov-Hausdorff topology. 2. There is a bijective encoding of the site-percolated triangulation by means of a two-dimensional random walk, and this walk converges to the correlated two-dimensional Brownian motion which encodes SLE6_6-decorated 8/3\sqrt{8/3}-LQG via the mating-of-trees theorem of Duplantier-Miller-Sheffield (2014); this is sometimes called peanosphere convergence\textit{peanosphere convergence}. We prove that one in fact has joint\textit{joint} convergence in both of these two senses simultaneously. We also improve the metric convergence result by showing that the map decorated by the full collection of percolation interfaces (rather than just a single interface) converges to 8/3\sqrt{8/3}-LQG decorated by CLE6_6 in the metric space sense. This is the first work to prove simultaneous convergence of any random planar map model in the metric and peanosphere senses. Moreover, this work is an important step in an ongoing program to prove that random triangulations embedded into C\mathbb C via the so-called Cardy embedding\textit{Cardy embedding} converge to 8/3\sqrt{8/3}-LQG.Comment: 55 pages; 13 Figures. Minor revision according to a referee report. Accepted for publication at EJ

    A Quantitative Steinitz Theorem for Plane Triangulations

    Full text link
    We give a new proof of Steinitz's classical theorem in the case of plane triangulations, which allows us to obtain a new general bound on the grid size of the simplicial polytope realizing a given triangulation, subexponential in a number of special cases. Formally, we prove that every plane triangulation GG with nn vertices can be embedded in R2\mathbb{R}^2 in such a way that it is the vertical projection of a convex polyhedral surface. We show that the vertices of this surface may be placed in a 4n3×8n5×ζ(n)4n^3 \times 8n^5 \times \zeta(n) integer grid, where ζ(n)≤(500n8)τ(G)\zeta(n) \leq (500 n^8)^{\tau(G)} and τ(G)\tau(G) denotes the shedding diameter of GG, a quantity defined in the paper.Comment: 25 pages, 6 postscript figure
    • …
    corecore