2,242 research outputs found

    Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition

    Get PDF
    Online handwritten Chinese text recognition (OHCTR) is a challenging problem as it involves a large-scale character set, ambiguous segmentation, and variable-length input sequences. In this paper, we exploit the outstanding capability of path signature to translate online pen-tip trajectories into informative signature feature maps using a sliding window-based method, successfully capturing the analytic and geometric properties of pen strokes with strong local invariance and robustness. A multi-spatial-context fully convolutional recurrent network (MCFCRN) is proposed to exploit the multiple spatial contexts from the signature feature maps and generate a prediction sequence while completely avoiding the difficult segmentation problem. Furthermore, an implicit language model is developed to make predictions based on semantic context within a predicting feature sequence, providing a new perspective for incorporating lexicon constraints and prior knowledge about a certain language in the recognition procedure. Experiments on two standard benchmarks, Dataset-CASIA and Dataset-ICDAR, yielded outstanding results, with correct rates of 97.10% and 97.15%, respectively, which are significantly better than the best result reported thus far in the literature.Comment: 14 pages, 9 figure

    Multimodal One-Shot Learning of Speech and Images

    Full text link
    Imagine a robot is shown new concepts visually together with spoken tags, e.g. "milk", "eggs", "butter". After seeing one paired audio-visual example per class, it is shown a new set of unseen instances of these objects, and asked to pick the "milk". Without receiving any hard labels, could it learn to match the new continuous speech input to the correct visual instance? Although unimodal one-shot learning has been studied, where one labelled example in a single modality is given per class, this example motivates multimodal one-shot learning. Our main contribution is to formally define this task, and to propose several baseline and advanced models. We use a dataset of paired spoken and visual digits to specifically investigate recent advances in Siamese convolutional neural networks. Our best Siamese model achieves twice the accuracy of a nearest neighbour model using pixel-distance over images and dynamic time warping over speech in 11-way cross-modal matching.Comment: 5 pages, 1 figure, 3 tables; accepted to ICASSP 201

    Learning Fast and Slow: PROPEDEUTICA for Real-time Malware Detection

    Full text link
    In this paper, we introduce and evaluate PROPEDEUTICA, a novel methodology and framework for efficient and effective real-time malware detection, leveraging the best of conventional machine learning (ML) and deep learning (DL) algorithms. In PROPEDEUTICA, all software processes in the system start execution subjected to a conventional ML detector for fast classification. If a piece of software receives a borderline classification, it is subjected to further analysis via more performance expensive and more accurate DL methods, via our newly proposed DL algorithm DEEPMALWARE. Further, we introduce delays to the execution of software subjected to deep learning analysis as a way to "buy time" for DL analysis and to rate-limit the impact of possible malware in the system. We evaluated PROPEDEUTICA with a set of 9,115 malware samples and 877 commonly used benign software samples from various categories for the Windows OS. Our results show that the false positive rate for conventional ML methods can reach 20%, and for modern DL methods it is usually below 6%. However, the classification time for DL can be 100X longer than conventional ML methods. PROPEDEUTICA improved the detection F1-score from 77.54% (conventional ML method) to 90.25%, and reduced the detection time by 54.86%. Further, the percentage of software subjected to DL analysis was approximately 40% on average. Further, the application of delays in software subjected to ML reduced the detection time by approximately 10%. Finally, we found and discussed a discrepancy between the detection accuracy offline (analysis after all traces are collected) and on-the-fly (analysis in tandem with trace collection). Our insights show that conventional ML and modern DL-based malware detectors in isolation cannot meet the needs of efficient and effective malware detection: high accuracy, low false positive rate, and short classification time.Comment: 17 pages, 7 figure

    Leveraging Expert Models for Training Deep Neural Networks in Scarce Data Domains: Application to Offline Handwritten Signature Verification

    Full text link
    This paper introduces a novel approach to leverage the knowledge of existing expert models for training new Convolutional Neural Networks, on domains where task-specific data are limited or unavailable. The presented scheme is applied in offline handwritten signature verification (OffSV) which, akin to other biometric applications, suffers from inherent data limitations due to regulatory restrictions. The proposed Student-Teacher (S-T) configuration utilizes feature-based knowledge distillation (FKD), combining graph-based similarity for local activations with global similarity measures to supervise student's training, using only handwritten text data. Remarkably, the models trained using this technique exhibit comparable, if not superior, performance to the teacher model across three popular signature datasets. More importantly, these results are attained without employing any signatures during the feature extraction training process. This study demonstrates the efficacy of leveraging existing expert models to overcome data scarcity challenges in OffSV and potentially other related domains

    Siamese-Network Based Signature Verification using Self Supervised Learning

    Get PDF
    The use of signatures is often encountered in various public documents ranging from academic documents to business documents that are a sign that the existence of signatures is crucial in various administrative processes. The frequent use of signatures does not mean a procedure without loopholes, but we must remain vigilant against signature falsification carried out with various motives behind it. Therefore, in this study, a signature verification system was developed that could prevent the falsification of signatures in public documents by using digital imagery of existing signatures. This study used neural networks with siamese network-based architectures that also empower self-supervised learning techniques to improve accuracy in the realm of limited data. The final evaluation of the machine learning method used gets a maximum accuracy of 83% and this result is better than the machine learning model that does not involve self-supervised learning methods
    • …
    corecore