29,755 research outputs found

    A Multi-GPU Programming Library for Real-Time Applications

    Full text link
    We present MGPU, a C++ programming library targeted at single-node multi-GPU systems. Such systems combine disproportionate floating point performance with high data locality and are thus well suited to implement real-time algorithms. We describe the library design, programming interface and implementation details in light of this specific problem domain. The core concepts of this work are a novel kind of container abstraction and MPI-like communication methods for intra-system communication. We further demonstrate how MGPU is used as a framework for porting existing GPU libraries to multi-device architectures. Putting our library to the test, we accelerate an iterative non-linear image reconstruction algorithm for real-time magnetic resonance imaging using multiple GPUs. We achieve a speed-up of about 1.7 using 2 GPUs and reach a final speed-up of 2.1 with 4 GPUs. These promising results lead us to conclude that multi-GPU systems are a viable solution for real-time MRI reconstruction as well as signal-processing applications in general.Comment: 15 pages, 10 figure

    Accelerated Modeling of Near and Far-Field Diffraction for Coronagraphic Optical Systems

    Full text link
    Accurately predicting the performance of coronagraphs and tolerancing optical surfaces for high-contrast imaging requires a detailed accounting of diffraction effects. Unlike simple Fraunhofer diffraction modeling, near and far-field diffraction effects, such as the Talbot effect, are captured by plane-to-plane propagation using Fresnel and angular spectrum propagation. This approach requires a sequence of computationally intensive Fourier transforms and quadratic phase functions, which limit the design and aberration sensitivity parameter space which can be explored at high-fidelity in the course of coronagraph design. This study presents the results of optimizing the multi-surface propagation module of the open source Physical Optics Propagation in PYthon (POPPY) package. This optimization was performed by implementing and benchmarking Fourier transforms and array operations on graphics processing units, as well as optimizing multithreaded numerical calculations using the NumExpr python library where appropriate, to speed the end-to-end simulation of observatory and coronagraph optical systems. Using realistic systems, this study demonstrates a greater than five-fold decrease in wall-clock runtime over POPPY's previous implementation and describes opportunities for further improvements in diffraction modeling performance.Comment: Presented at SPIE ASTI 2018, Austin Texas. 11 pages, 6 figure

    Data Provenance and Management in Radio Astronomy: A Stream Computing Approach

    Get PDF
    New approaches for data provenance and data management (DPDM) are required for mega science projects like the Square Kilometer Array, characterized by extremely large data volume and intense data rates, therefore demanding innovative and highly efficient computational paradigms. In this context, we explore a stream-computing approach with the emphasis on the use of accelerators. In particular, we make use of a new generation of high performance stream-based parallelization middleware known as InfoSphere Streams. Its viability for managing and ensuring interoperability and integrity of signal processing data pipelines is demonstrated in radio astronomy. IBM InfoSphere Streams embraces the stream-computing paradigm. It is a shift from conventional data mining techniques (involving analysis of existing data from databases) towards real-time analytic processing. We discuss using InfoSphere Streams for effective DPDM in radio astronomy and propose a way in which InfoSphere Streams can be utilized for large antennae arrays. We present a case-study: the InfoSphere Streams implementation of an autocorrelating spectrometer, and using this example we discuss the advantages of the stream-computing approach and the utilization of hardware accelerators

    Solving the Klein-Gordon equation using Fourier spectral methods: A benchmark test for computer performance

    Get PDF
    The cubic Klein-Gordon equation is a simple but non-trivial partial differential equation whose numerical solution has the main building blocks required for the solution of many other partial differential equations. In this study, the library 2DECOMP&FFT is used in a Fourier spectral scheme to solve the Klein-Gordon equation and strong scaling of the code is examined on thirteen different machines for a problem size of 512^3. The results are useful in assessing likely performance of other parallel fast Fourier transform based programs for solving partial differential equations. The problem is chosen to be large enough to solve on a workstation, yet also of interest to solve quickly on a supercomputer, in particular for parametric studies. Unlike other high performance computing benchmarks, for this problem size, the time to solution will not be improved by simply building a bigger supercomputer.Comment: 10 page

    Multiple scattering theory for polycrystalline materials with strong grain anisotropy: theoretical fundamentals and applications

    Get PDF
    This work is a natural extension of the authors previous work, Multiple scattering theory for heterogeneous elastic continua with strong property fluctuation, theoretical fundamentals and applications, which established the foundation for developing multiple scattering model for strongly scattering heterogeneous elastic continua. In this work, the corresponding multiple scattering theory for polycrystalline materials with randomly oriented anisotropic crystallites is developed. As applications in ultrasonic nondestructive evaluation, we calculated the dispersion and attenuation coefficient of one of the most important polycrystalline materials in aeronautics engineering, high temperature titanium alloys. The effects of grain symmetry, grain size, and alloying elements on the dispersion and attenuation behaviors are examined. Key information is obtained which has significant implications for quantitatively evaluating the average grain size, monitoring the phase transition, and even estimating gradual change in chemical composition of titanium components in gas turbine engines. For applications in seismology, the velocities and Q-factors for both hexagonal and cubic polycrystalline iron models for the Earth uppermost inner core are obtained in the whole frequency range. This work provides a universal, quantitative model for characterization of a large variety of polycrystalline materials. It also can be extended to incorporate more complicated microstructures, including ellipsoidal grains with or without textures, and even multiphase polycrystalline materials. The new model demonstrates great potential of applications in ultrasonic nondestructive evaluation and inspection of aerospace and aeronautic structures. It also provides a theoretical framework for quantitative seismic data explanation and inversion for the material composition and structural formations of the Earth inner core.Comment: 37 pages, 16 figure
    corecore