453 research outputs found

    Experience-dependent structural rearrangements of synaptic connectivity in the adult central nervous system

    Get PDF
    The functioning of the brain critically relies on its capacity to adapt and respond to its environment. The brain’s ability to change in response to experience is called plasticity and underlies principal brain functions, such as learning and memory. My thesis work investigated the ability of the brain to structurally remodel upon altered experiences, and changes that occur during normal aging. Furthermore, I addressed what might be the molecular mechanisms regulating such remodeling. I will therefore start by introducing the term of experience-dependent plasticity and exemplify the brain’s capacity to adapt to changes in experience and usage. I will then attempt to describe mechanisms of experience-dependent plasticity on the functional, molecular and structural level. Furthermore, I will discuss the impact of age and life-style on the brain’s capacity for plasticity. Finally, I will close the introduction by outlining the function and anatomy of the brain region that was the main subject of our investigations, namely the hippocampus, and specifically the mossy fiber pathwa

    Human Brain/Cloud Interface

    Get PDF
    The Internet comprises a decentralized global system that serves humanity’s collective effort to generate, process, and store data, most of which is handled by the rapidly expanding cloud. A stable, secure, real-time system may allow for interfacing the cloud with the human brain. One promising strategy for enabling such a system, denoted here as a “human brain/cloud interface” (“B/CI”), would be based on technologies referred to here as “neuralnanorobotics.” Future neuralnanorobotics technologies are anticipated to facilitate accurate diagnoses and eventual cures for the ∼400 conditions that affect the human brain. Neuralnanorobotics may also enable a B/CI with controlled connectivity between neural activity and external data storage and processing, via the direct monitoring of the brain’s ∼86 × 109 neurons and ∼2 × 1014 synapses. Subsequent to navigating the human vasculature, three species of neuralnanorobots (endoneurobots, gliabots, and synaptobots) could traverse the blood–brain barrier (BBB), enter the brain parenchyma, ingress into individual human brain cells, and autoposition themselves at the axon initial segments of neurons (endoneurobots), within glial cells (gliabots), and in intimate proximity to synapses (synaptobots). They would then wirelessly transmit up to ∼6 × 1016 bits per second of synaptically processed and encoded human–brain electrical information via auxiliary nanorobotic fiber optics (30 cm3) with the capacity to handle up to 1018 bits/sec and provide rapid data transfer to a cloud based supercomputer for real-time brain-state monitoring and data extraction. A neuralnanorobotically enabled human B/CI might serve as a personalized conduit, allowing persons to obtain direct, instantaneous access to virtually any facet of cumulative human knowledge. Other anticipated applications include myriad opportunities to improve education, intelligence, entertainment, traveling, and other interactive experiences. A specialized application might be the capacity to engage in fully immersive experiential/sensory experiences, including what is referred to here as “transparent shadowing” (TS). Through TS, individuals might experience episodic segments of the lives of other willing participants (locally or remote) to, hopefully, encourage and inspire improved understanding and tolerance among all members of the human family

    Building Brains for Bodies

    Get PDF
    We describe a project to capitalize on newly available levels of computational resources in order to understand human cognition. We will build an integrated physical system including vision, sound input and output, and dextrous manipulation, all controlled by a continuously operating large scale parallel MIMD computer. The resulting system will learn to "think'' by building on its bodily experiences to accomplish progressively more abstract tasks. Past experience suggests that in attempting to build such an integrated system we will have to fundamentally change the way artificial intelligence, cognitive science, linguistics, and philosophy think about the organization of intelligence. We expect to be able to better reconcile the theories that will be developed with current work in neuroscience

    27th Annual Computational Neuroscience Meeting (CNS*2018): Part One

    Get PDF
    corecore